首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasites greatly impact host fitness. The immune system is fundamental to combat endoparasites, and survival increases with greater investment in immunity. Some ectoparasites, by contrast, are reportedly combated by the use of the uropygial gland, an organ exclusive to birds, which secretes an oily substance (preen oil) that is spread on plumage. However, both mounting an immune response against a parasite and producing uropygial gland secretion depend on the same resources, a situation which may induce trade‐offs between the two antiparasitic functions. In this study, I experimentally test whether immune response is traded off against uropygial gland size in the house sparrow Passer domesticus. In the experiment, a group of sparrows were injected with an antigen (lipopolysaccharide, LPS), which stimulates the immune system, while the other group received a sham injection. The uropygial gland of LPS‐treated birds decreased significantly more than that of the control birds after treatment. Nevertheless, the effect of the treatment was limited to house sparrows with low body mass, suggesting that heavy house sparrows were able to produce an immune response while maintaining a relatively large uropygial gland. Given that uropygial gland size is strongly related to production of preen oil, these results suggest that preen oil production declines in birds in poor body condition when resources are preferentially diverted to other demanding functions, such as the immune system. Considering that the uropygial gland is involved in several fitness‐related processes in birds, the trade‐off between immune response and uropygial gland size may have important consequences for bird life histories.  相似文献   

2.
Avian plumage harbors various pathogens such as feather-degrading bacteria, which have the potential to reduce host fitness. A growing body of evidence suggests that the secretion of the uropygial gland of birds—preen oil—acts as one of the first lines of defence against harmful bacteria. However, previous studies on the antimicrobial impact of preen oil have yielded controversial results. The impact of preen oil on bacterial densities of feathers was experimentally investigated in two passerine species: great tits Parus major and pied flycatchers Ficedula hypoleuca. More specifically, we tested whether the antibacterial effect of the preen oil secreted by the same individual differs from that of the preen oil originating from the gland of other species. In the laboratory, ventral feathers were treated with preen oil from (1) an individual’s own gland, (2) from the gland of another passerine species, or (3) from the gland of a phylogenetically distant bird species. We detected a significant antibacterial effect of preen oil on bacteria that were attached to feathers, though the effect did not depend on whether the oil originated from the individual’s own gland or from the gland of another bird species. However, treatment with preen oil suppressed the density of bacteria more in the pied flycatcher than in the great tit. This is the first study providing experimental evidence that preen oil represents an important antimicrobial mechanism against those plumage bacteria that are attached to feathers.  相似文献   

3.
Preen oil, the secretion of the uropygial gland, may be an important source of body odour in birds. By characterizing the chemical composition of preen oil, we can describe the olfactory phenotypes of birds and investigate whether odours could have a function in sexual signalling or other chemical communication. Here we analysed the preen oil of a wild passerine, the European Pied Flycatcher Ficedula hypoleuca, to find out whether it holds socially relevant information. We sampled both the female and male of breeding pairs during nestling rearing to test for sex differences and within-pair similarity. We additionally sampled the females during incubation to test for changes across breeding stages and for individual repeatability of chemical profiles. Pair mates had similar chemical profiles in comparison with other breeding adults. Furthermore, we found evidence for sex differences and for changes across breeding stages. Notably, the preen oil of females was more diverse and more volatile than that of males, and the preen oil secreted by females during incubation was more volatile than that secreted during nestling rearing. However, we found no evidence for individual repeatability of chemical profiles across breeding stages in females. Our results point towards a function of preen oil in sexual signalling, although other functions should not be excluded. Our study is a first step towards understanding the role of odours in the social life of an important avian model species used in the study of mate choice and sexual selection.  相似文献   

4.
Pathogens such as bacteria, fungi and malaria and related haemosporidians provoke negative effects on the fitness of their hosts. Animals have developed a range of defensive mechanisms to resist or eliminate these parasitic infections and their negative fitness costs. The uropygial gland secretion has been proposed to act as defensive barrier of skin and plumage in the fight against bacteria and fungi, and may prevent birds from acquiring haemosporidian infections. Thus, the secretion of uropygial glands of birds may favour survival of individuals. However, whether uropygial gland secretion influence survival remains unknown. Here we explore if the size of the uropygial gland and malaria infection influence survival of house martins Delichon urbica. We showed, for the first time, that the volume of the uropygial gland positively predicted survival prospects of malaria infected house martins. Malaria infected birds had the lowest probability of survival, with the effect of gland size on survival prospects depending on infection: infected house martins with larger uropygial glands were better able to survive to the next breeding season, while infected birds with small uropygial glands were not. These results highlight the importance of uropygial gland secretion in the life history of wild birds.  相似文献   

5.
The uropygial gland of birds secretes wax that is applied to the plumage, where the secretions are hypothesized to eliminate fungi and bacteria, thereby potentially providing important benefits in terms of plumage maintenance. We analyzed variation in size of the uropygial gland in 212 species of birds to determine the function and the ecological correlates of variation in gland size. Bird species with larger uropygial glands had more genera of chewing lice of the sub-order Amblycera, but not of the sub-order Ischnocera, and more feather mites. There was a fitness advantage associated with relatively large uropygial glands because such species had higher hatching success. These findings are consistent with the hypothesis that the uropygial gland functions to manage the community of microorganisms, and that certain taxa of chewing lice have diverged as a consequence of these defenses.  相似文献   

6.
Animals frequently use metabolites produced by symbiotic bacteria as agents against pathogens and parasites. Secretions from the preen gland of birds are used for this purpose, although its chemicals apparently are produced by the birds themselves. European hoopoes Upupa epops and green woodhoopoes Phoeniculus purpureus harbour symbiotic bacteria in the uropygial gland that might be partly responsible for the chemical composition of secretions. Here we investigate the antimicrobial activity of the volatile fraction of chemicals in hoopoe preen secretions, and, by means of experimental antibiotic injections, test whether symbiotic bacteria living within the uropygial gland are responsible for their production. Hoopoes produce two different kinds of secretions that differ drastically in their chemical composition. While the malodorous dark secretions produced by nestlings included a complex mix of volatiles, these chemicals did not appear in white secretions produced by non-nesting birds. All volatiles detected showed strong antibacterial activity, and a mixture of the chemicals at the concentrations measured in nestling glands inhibited the growth of all bacterial strains assayed. We found support for the hypothesized role of bacteria in the production of such antimicrobial chemicals because experimental clearance of bacteria from glands of nestlings with antibiotics resulted in secretions without most of the volatiles detected in control individuals. Thus, the presence of symbiotic bacteria in the uropygial gland provides hoopoes with potent antimicrobials for topical use.  相似文献   

7.
ISMAEL GALVÁN  & JUAN J. SANZ 《Ibis》2006,148(4):687-697
Plumicolous feather mites are ectosymbiotic organisms that live on bird feathers. Despite their abundance and prevalence among birds, the ecology of the interaction between these organisms and their hosts is poorly known. As feather mites feed on oil that birds spread from their uropygial gland, it has been hypothesized, but never tested, that the number of feather mites increases with the size of the uropygial gland of their hosts. In this study the number of feather mites is considered with respect to uropygial gland size in a breeding population of Great Tits Parus major in order to test this hypothesis. As predicted, the number of feather mites correlated positively with the uropygial gland size of their hosts, showing for the first time that uropygial gland size can explain the variance in feather mite load among conspecifics. Previous studies relating feather mite load to plumage colour have suggested that feather mites may be parasitic or neutral. To confirm this, the yellowness of breast feathers was also assessed. However, the results ran in the opposite direction to that expected, showing a positive correlation between mite load and plumage yellowness, which suggests that further work is needed to give clear evidence for a specific nature of feather mites. However, Great Tits with higher mite loads had lower hatching and breeding success, which may support the idea that feather mites are parasites, although this effect must be taken with caution because it was only found in males. Age or sex effects were not found on the number of feather mites, and it is proposed that hormonal levels may not be sufficient to explain the variation in feather mite loads. Interestingly, a positive correlation was detected between uropygial gland size and plumage brightness, which could be a novel factor to take into account in studies of plumage colour.  相似文献   

8.
Defence mechanisms against parasites and pathogens are some of the most elaborate biological systems in animals. The oily secretion of the avian uropygial gland has been suggested to serve as a chemical defence against feather and eggshell bacteria. Yet, the traits associated with uropygial gland oil production are not well understood. We conducted a phylogenetic analysis comprising 132 European bird species aiming to test: (1) whether life‐history and ecological traits drive gland size evolution by potentially promoting microbial infestation and (2) how these traits affects change in the gland size throughout the annual cycle. We show that the size of the uropygial gland is dynamic (i.e. increasing from the nonbreeding to the breeding season, independent of sex). Furthermore, we found that the year‐round size of the gland was similar between sexes and was correlated with different ecological and life‐history traits promoting microbial infection throughout the annual cycle. During the breeding season, the total eggshell surface area in a clutch correlated significantly and positively with the gland size, suggesting the importance of oil in protecting eggs from microbes. Social species exhibited a larger gland size increase during the breeding season compared to nonsocials; a change that was also predicted by the total eggshell surface area. Aquatic, riparian and non‐migratory species had larger glands than terrestrials and migrants, respectively. The findings of the present study suggest that aquatic environments may promote the production of gland oil, through either the need of waterproofing the plumage and/or defending it against the intensified feather degradation in these moist conditions. Finally, we found a negative effect of the incubation period on uropygial gland size, which may suggest an energetic constraint imposed by other development‐connected costly activities. Our results show that the role of the uropygial gland dynamically varies during the annual cycle, potentially in response to seasonal variation in parasitic infection risk. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 543–563.  相似文献   

9.
Chemical warfare? Effects of uropygial oil on feather‐degrading bacteria   总被引:4,自引:0,他引:4  
Anti-microbial activity is a commonly suggested but rarely tested property of avian uropygial oil. Birds may defend themselves against feather-degrading and other potentially harmful bacteria using this oil. We preliminarily identified 13 bacterial isolates taken from the plumage of wild house finches Carpodacus mexicanus , measured bacterial production of the enzyme keratinase as an index of feather-degrading activity, and used the disc-diffusion method to test bacterial response to uropygial oil of house finches. For comparison, we performed the same tests on a type strain of the known feather-degrading bacterium Bacillus licheniformis . Uropygial oil inhibited the growth of three strongly feather-degrading isolates (including Bacillus licheniformis ), as well as one weakly feather-degrading isolate and one non-feather-degrading isolate. Uropygial oil appeared to enhance the growth of one weakly feather-degrading isolate. Growth of the remaining isolates was unaffected by uropygial oil. These results suggest that birds may defend themselves against some feather-degrading bacteria using uropygial oil.  相似文献   

10.
Gregorio Moreno‐Rueda 《Ibis》2014,156(2):457-460
Feather holes represent damage to the plumage of birds and are correlated with delayed moult. Uropygial gland size is negatively correlated with feather holes. Consequently, it was predicted that birds with smaller uropygial glands would have more feather holes, and that this would affect moult performance. I examined this prediction in the House Sparrow Passer domesticus. Individuals with smaller uropygial glands had more feather holes, and those with more feather holes moulted later and faster. Therefore, uropygial gland size seemed to affect moult performance via its effect on feather holes. Uropygial gland size may have a positive effect on plumage quality, through a negative effect on feather holes, and therefore on moult timing and speed.  相似文献   

11.
It has recently been shown that sandpipers (Scolopacidae) abruptly switch the chemical composition of their preen gland secretions from mono- to diester waxes just before the period of courtship. The timing and context of the shift suggested that diesters could provide a visible quality signal during mate choice. We used captive red knots Calidris canutus to test whether mono- and diester preen waxes affect the light reflectance ("colour") of the plumage. We also determined light absorbance spectra of the two wax types. The reflectance of breast feathers of the breeding plumage was measured with spectrophotometry when birds secreted monoesters and six weeks later when they secreted diester preen waxes. Light reflectance was also measured after removing the mono- and diester waxes from the plumage with a solvent. The results show that: (1) diester preen waxes absorb more light, especially ultraviolet (UV), than monoester preen waxes, but that (2) the compositional shift in the preen waxes did not change plumage reflectance and, (3) the removal of preen waxes did not change the reflectance of the plumage within the light spectrum assumed visible to birds (320–700 nm). This is not consistent with the idea that compositional shifts in the preen waxes of red knots have a visual function.  相似文献   

12.
Preen wax is important for plumage maintenance and other functions. Its chemical composition is complex, and separating and quantifying its components, commonly by gas chromatography (GC), can be challenging. We present a simple analytical system consisting of thin‐layer chromatography/flame ionization detection (TLC‐FID) using a solvent system of 100% toluene to analyse the complex compound classes present in preen wax. We used GC and TLC‐FID to investigate the effects of migratory status, diet and captivity on the preen wax composition of White‐throated Sparrows Zonotrichia albicollis, and to measure the quantity of preen wax on the head, primary and tail feathers. White‐throated Sparrows produced preen wax containing only monoesters regardless of migratory state. The monoesters contained several isomers consisting of homologous series of fatty alcohols (C10–C20) and fatty acids (C13–C19) esterified together in different combinations to form monoesters with total carbon numbers ranging from C23 to C38. Weighted average monoester carbon number was greater in captive birds than in wild birds and was greater in captives fed a formulated diet enriched with sesame oil than in birds fed the same diet enriched with fish oil. Captivity and migratory state also affected the complexity of the mixture of monoesters. There was significantly more preen wax on head feathers compared with primary and tail feathers. We suggest that among its many functions, preen wax may play a role in drag reduction by affecting the physical properties of feathers, and/or the fluid flow at their surfaces.  相似文献   

13.
Recent studies have demonstrated that preen oil acts to reduce or eliminate feather-associated bacteria. The mechanisms underlying this antibacterial activity, however, are incompletely understood. In addition to the activity of alcohols (i.e. 3,7-dimethyloctan-1-ol), recent research has suggested that antimicrobial peptides may underlie the antibacterial activity of preen oil. Here, we document the presence of innate and adaptive immune proteins, lysozyme and immunoglobulin Y (IgY), in the preen oil of house sparrows Passer domesticus. We suggest lysozyme functions as an antimicrobial agent, with potentially important impacts against Gram-positive feather degrading bacteria. Furthermore, both lysozyme and IgY likely act in local immune defence of the preen gland, and may also play a role in regulating the local microbiome, with potentially important consequences for chemical communication and signalling. Our findings suggest that the preen gland and its secretions should be considered an integral part of the body's first line of defence against invading infections.  相似文献   

14.
The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host–microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high‐throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad‐spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co‐occurrence or co‐exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad‐spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms.  相似文献   

15.
The uropygial gland (preen gland) is a holocrine secretory gland situated at the base of the tail in birds which produces a hydrophobic fatty secretion. In certain birds, such as the hoopoe, Upupa epops, the composition of this secretion is influenced by both seasonal and sexual factors, becoming darker and more malodorous in females and in their nestlings during the nesting phase. The secretion is spread throughout the plumage when the bird preens itself, leaving its feathers flexible and waterproof. It is also thought to play a role in defending the bird against predators and parasites. We have isolated from the uropygial secretion of a nestling a bacterium that grows in monospecific culture which we have identified unambiguously by phenotypic and genotypic means as Enterococcus faecalis. The strain in question produces antibacterial substances that are active against all gram-positive bacteria assayed and also against some gram-negative strains. Its peptide nature identifies it as a bacteriocin within the group known as enterocins. Two peptides were purified to homogeneity (MR10A and MR10B), and matrix-assisted laser desorption ionization-time of flight (mass spectrometry) analysis showed masses of 5201.58 and 5207.7 Da, respectively. Amino acid sequencing of both peptides revealed high similarity with enterocin L50A and L50B (L. M. Cintas, P. Casaus, H. Holo, P. E. Hernández, I. F. Nes, and L. S. H?varstein, J. Bacteriol. 180:1988-1994, 1998). PCR amplification of total DNA from strain MRR10-3 with primers for the L50A/B structural genes and sequencing of the amplified fragment revealed almost identical sequences, except for a single conservative change in residue 38 (Glu-->Asp) in MR10A and two changes in residues 9 (Thr-->Ala) and 15 (Leu-->Phe) in MR10B. This is the first time that the production of bacteriocins by a bacterium isolated from the uropygial gland has been described. The production of these broad-spectrum antibacterial substances by an enterococcal strain living in the uropygial gland may be important to the hygiene of the nest and thus to the health of the eggs and chicks.  相似文献   

16.
The uropygial gland is an organ exclusive of birds that secretes an oily substance, the uropygial secretion, the functions of which are still debated. One of the proposed hypothesis is its possible action against chewing lice (order Phthiraptera), a group of avian ectoparasites that feed on feathers, causing different types of harm. However, this hypothesis lacks support. The present study analyses the relationship between uropygial gland size and the number of feather holes (which is correlated with the load of chewing lice) in the house sparrow Passer domesticus. Moreover, the relationship between the uropygial gland size and different aspects of sparrow health (body condition, immunocompetence and haematocrit), as well as sexually selected traits in males (badge and wingbar size), is tested. The results show a negative correlation between uropygial gland size and number of feather holes, a result found both years of the study. This result supports the hypothesis that uropygial secretion is used against chewing lice. Uropygial gland size also correlated positively with body condition (residuals of body mass relative to tarsus length) and immunocompetence, being therefore related to bird health. After a year in captivity, with resources provided ad libitum, no correlation was found between individual uropygial gland size and body condition or haematocrit, perhaps because the negative effect that chewing lice exert on bird health was offset by captivity conditions. Uropygial gland size was not correlated with badge size, but it was correlated with wingbar size, which furthermore supports the contention that this sexually selected signal acts as an indicator of lice resistance in the house sparrow. In summary, this study supports the idea of a positive relationship between uropygial gland and bird health in the house sparrow, the gland secretion affording resistance against chewing lice.  相似文献   

17.
The uropygial gland (preen gland) is a holocrine secretory gland situated at the base of the tail in birds which produces a hydrophobic fatty secretion. In certain birds, such as the hoopoe, Upupa epops, the composition of this secretion is influenced by both seasonal and sexual factors, becoming darker and more malodorous in females and in their nestlings during the nesting phase. The secretion is spread throughout the plumage when the bird preens itself, leaving its feathers flexible and waterproof. It is also thought to play a role in defending the bird against predators and parasites. We have isolated from the uropygial secretion of a nestling a bacterium that grows in monospecific culture which we have identified unambiguously by phenotypic and genotypic means as Enterococcus faecalis. The strain in question produces antibacterial substances that are active against all gram-positive bacteria assayed and also against some gram-negative strains. Its peptide nature identifies it as a bacteriocin within the group known as enterocins. Two peptides were purified to homogeneity (MR10A and MR10B), and matrix-assisted laser desorption ionization-time of flight (mass spectrometry) analysis showed masses of 5201.58 and 5207.7 Da, respectively. Amino acid sequencing of both peptides revealed high similarity with enterocin L50A and L50B (L. M. Cintas, P. Casaus, H. Holo, P. E. Hernández, I. F. Nes, and L. S. Håvarstein, J. Bacteriol. 180:1988-1994, 1998). PCR amplification of total DNA from strain MRR10-3 with primers for the L50A/B structural genes and sequencing of the amplified fragment revealed almost identical sequences, except for a single conservative change in residue 38 (Glu→Asp) in MR10A and two changes in residues 9 (Thr→Ala) and 15 (Leu→Phe) in MR10B. This is the first time that the production of bacteriocins by a bacterium isolated from the uropygial gland has been described. The production of these broad-spectrum antibacterial substances by an enterococcal strain living in the uropygial gland may be important to the hygiene of the nest and thus to the health of the eggs and chicks.  相似文献   

18.
Evidence that bird odour can encode social information that can be used in chemical communication is growing, but is restricted to a few taxonomic groups. Among birds, diurnal raptors (i.e. birds from the Accipitriformes and Falconiformes order) have always been considered as mainly relying on their visual abilities. Although they seem to have a functional sense of smell, whether their odour can convey social information has yet to be determined. Combining gas‐chromatography‐mass‐spectrometry (GCMS) and microsatellite data, we tested whether chemical compounds from preen gland secretions can encode sex, age, individuality, seasonal differences and genetic relatedness in the gregarious accipitriform black kite Milvus migrans. While no differences in preen oil composition were found between age classes, an individual signature was detected. While a seasonal variation was found in both sexes, compounds differ between sexes in the non‐breeding season. Finally, a significant correlation between chemical proximity and genetic proximity was detected in male–male dyads and male–female dyads but not in female–female dyads. Our study provides the first evidence in raptors that preen secretion can convey information that may potentially be used in individual recognition, reproductive synchronization and inbreeding avoidance, and suggests that raptors may rely upon their olfactory abilities more than previously thought. This study opens promising avenues for further studies in raptor chemical communication.  相似文献   

19.
A factor in bird skin responsible forD. gallinae feeding on its natural hosts was investigated. Both skin and plumage of chickens contained substance(s) attractive to mites which was easily dissolved in benzene derivates, amyl acetate or ethyl acetate, thermostabile up to 100°C, nonvolatile, alkaline hydrolysable, and susceptible to oxidation. Components of surface skin lipids were ascertained to be the host-markers when using Chromatographic separation and consecutive in vitro feeding technique for testing the isolates. Purified specific fowl diol esters of fatty acids prepared from the secretion of uropygial (preen) glands of hens were at least as effective a feeding stimulant for the mites as the natural extract of surface lipids of birds.  相似文献   

20.
GREGORIO MORENO‐RUEDA 《Ibis》2011,153(1):195-198
This study assesses whether uropygial gland size is related to improved feather quality. To address this question, I analysed the relationship between uropygial gland size and feather wear in the House Sparrow Passer domesticus. The results show that birds with larger uropygial glands had less worn feathers, suggesting that uropygial gland secretions improve feather resistance to abrasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号