首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

2.
Rapid stomatal closure is driven by the activation of S‐type anion channels in the plasma membrane of guard cells. This response has been linked to Ca2+ signalling, but the impact of transient Ca2+ signals on S‐type anion channel activity remains unknown. In this study, transient elevation of the cytosolic Ca2+ level was provoked by voltage steps in guard cells of intact Nicotiana tabacum plants. Changes in the activity of S‐type anion channels were monitored using intracellular triple‐barrelled micro‐electrodes. In cells kept at a holding potential of ?100 mV, voltage steps to ?180 mV triggered elevation of the cytosolic free Ca2+ concentration. The increase in the cytosolic Ca2+ level was accompanied by activation of S‐type anion channels. Guard cell anion channels were activated by Ca2+ with a half maximum concentration of 515 nm (SE = 235) and a mean saturation value of ?349 pA (SE = 107) at ?100 mV. Ca2+ signals could also be evoked by prolonged (100 sec) depolarization of the plasma membrane to 0 mV. Upon returning to ?100 mV, a transient increase in the cytosolic Ca2+ level was observed, activating S‐type channels without measurable delay. These data show that cytosolic Ca2+ elevation can activate S‐type anion channels in intact guard cells through a fast signalling pathway. Furthermore, prolonged depolarization to 0 mV alters the activity of Ca2+ transport proteins, resulting in an overshoot of the cytosolic Ca2+ level after returning the membrane potential to ?100 mV.  相似文献   

3.
This review summarizes biogenesis, composition, intracellular transport, and possible functions of trichocysts. Trichocyst release by Paramecium is the fastest dense core‐secretory vesicle exocytosis known. This is enabled by the crystalline nature of the trichocyst “body” whose matrix proteins (tmp), upon contact with extracellular Ca2+, undergo explosive recrystallization that propagates cooperatively throughout the organelle. Membrane fusion during stimulated trichocyst exocytosis involves Ca2+ mobilization from alveolar sacs and tightly coupled store‐operated Ca2+‐influx, initiated by activation of ryanodine receptor‐like Ca2+‐release channels. Particularly, aminoethyldextran perfectly mimics a physiological function of trichocysts, i.e. defense against predators, by vigorous, local trichocyst discharge. The tmp's contained in the main “body” of a trichocyst are arranged in a defined pattern, resulting in crossstriation, whose period expands upon expulsion. The second part of a trichocyst, the “tip”, contains secretory lectins which diffuse upon discharge. Repulsion from predators may not be the only function of trichocysts. We consider ciliary reversal accompanying stimulated trichocyst exocytosis (also in mutants devoid of depolarization‐activated Ca2+ channels) a second, automatically superimposed defense mechanism. A third defensive mechanism may be effectuated by the secretory lectins of the trichocyst tip; they may inhibit toxicyst exocytosis in Dileptus by crosslinking surface proteins (an effect mimicked in Paramecium by antibodies against cell surface components). Some of the proteins, body and tip, are glycosylated as visualized by binding of exogenous lectins. This reflects the biogenetic pathway, from the endoplasmic reticulum via the Golgi apparatus, which is also supported by details from molecular biology. There are fragile links connecting the matrix of a trichocyst with its membrane; these may signal the filling state, full or empty, before and after tmp release upon exocytosis, respectively. This is supported by experimentally produced “frustrated exocytosis”, i.e. membrane fusion without contents release, followed by membrane resealing and entry in a new cycle of reattachment for stimulated exocytosis. There are some more puzzles to be solved: Considering the absence of any detectable Ca2+ and of acidity in the organelle, what causes the striking effects of silencing the genes of some specific Ca2+‐release channels and of subunits of the H+‐ATPase? What determines the inherent polarity of a trichocyst? What precisely causes the inability of trichocyst mutants to dock at the cell membrane? Many details now call for further experimental work to unravel more secrets about these fascinating organelles.  相似文献   

4.
Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell‐preferential mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9‐1 and mpk12‐1 single mutants as well as wild‐type plants, but not in mpk9‐1 mpk12‐1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA‐induced stomatal closure in wild‐type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9‐1, mpk12‐1 and mpk9‐1 mpk12‐1 mutants, as well in wild‐type plants. Furthermore, MeJA triggered elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in the mpk9‐1 mpk12‐1 double mutant as well as wild‐type plants. Activation of S‐type anion channels by MeJA was impaired in mpk9‐1 mpk12‐1. Together, these results indicate that MPK9 and MPK12 function upstream of S‐type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca2+]cyt elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells.  相似文献   

5.
During evolution, the cell as a fine‐tuned machine had to undergo permanent adjustments to match changes in its environment, while “closed for repair work” was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging “evolutionary cell biology.” Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage‐dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R‐type SNAREs differs in mono‐ and bikonta, as do Ca2+‐dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+‐ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional “inventions.”  相似文献   

6.
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca2+ concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca2+ by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo‐/endocytosis are governed by Ca2+, the latter by Ca2+ mobilization from alveolar sacs and a superimposed store‐operated Ca2+‐influx. Paramecium cells possess plasma membrane‐ and endoplasmic reticulum‐resident Ca2+‐ATPases/pumps (PMCA, SERCA), a variety of Ca2+ influx channels, including mechanosensitive and voltage‐dependent channels in the plasma membrane, furthermore a plethora of Ca2+‐release channels (CRC) of the inositol 1,4,5‐trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca2+ sensor for exocytosis. Among established targets and sensors of Ca2+ in Paramecium are calmodulin, calcineurin, as well as Ca2+/calmodulin‐dependent protein kinases, all with multiple functions. Thus, basic elements of Ca2+ signaling are available for Paramecium.  相似文献   

7.
8.
We report that two mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)‐induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca2+]cyt) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL‐induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL‐induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca2+]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca2+]cyt oscillation in YEL‐induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling.  相似文献   

9.
10.
11.
In cardiac and skeletal myocytes, and in most neurons, the opening of voltage‐gated Na+ channels (NaV channels) triggers action potentials, a process that is regulated via the interactions of the channels’ intercellular C‐termini with auxiliary proteins and/or Ca2+. The molecular and structural details for how Ca2+ and/or auxiliary proteins modulate NaV channel function, however, have eluded a concise mechanistic explanation and details have been shrouded for the last decade behind controversy about whether Ca2+ acts directly upon the NaV channel or through interacting proteins, such as the Ca2+ binding protein calmodulin (CaM). Here, we review recent advances in defining the structure of NaV intracellular C‐termini and associated proteins such as CaM or fibroblast growth factor homologous factors (FHFs) to reveal new insights into how Ca2+ affects NaV function, and how altered Ca2+‐dependent or FHF‐mediated regulation of NaV channels is perturbed in various disease states through mutations that disrupt CaM or FHF interaction.  相似文献   

12.

Background  

Mammalian STIM1 and STIM2 and the single Drosophila homologue dSTIM have been identified as key regulators of store-operated Ca2+ entry in cells. STIM proteins function both as molecular sensors of Ca2+concentration in the endoplasmic reticulum (ER) and the molecular triggers that activate SOC channels in the plasma membrane. Ca2+ is a crucial intracellular messenger utilised in many cellular processes, and regulators of Ca2+ homeostasis in the ER and cytosol are likely to play important roles in developmental processes. STIM protein expression is altered in several tumour types but the role of these proteins in developmental signalling pathways has not been thoroughly examined.  相似文献   

13.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

14.
15.
16.
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans‐Golgi network, partially overlapping with syntaxin‐6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca2+‐channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin‐2 content. In contrast, release kinetics and Ca2+‐sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long‐term re‐expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short‐term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca2+‐channel trafficking, but is dispensable for transmitter release.  相似文献   

17.
Extracellular adenosine 5′‐triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca2+, nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non‐hydrolysable analogue as probes to identify the molecular and physiological effects of eATP‐mediated signalling in tobacco. 2‐DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence‐related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.  相似文献   

18.
Ca2+ is an important signalling molecule that regulates multiple cellular processes, including apoptosis. Although Ca2+ influx through transient receptor potential (TRP) channels in the plasma membrane is known to trigger cell death, the function of intracellular TRP proteins in the regulation of Ca2+‐dependent signalling pathways and apoptosis has remained elusive. Here, we show that TRPP2, the ion channel mutated in autosomal dominant polycystic kidney disease (ADPKD), protects cells from apoptosis by lowering the Ca2+ concentration in the endoplasmic reticulum (ER). ER‐resident TRPP2 counteracts the activity of the sarcoendoplasmic Ca2+ ATPase by increasing the ER Ca2+ permeability. This results in diminished cytosolic and mitochondrial Ca2+ signals upon stimulation of inositol 1,4,5‐trisphosphate receptors and reduces Ca2+ release from the ER in response to apoptotic stimuli. Conversely, knockdown of TRPP2 in renal epithelial cells increases ER Ca2+ release and augments sensitivity to apoptosis. Our findings indicate an important function of ER‐resident TRPP2 in the modulation of intracellular Ca2+ signalling, and provide a molecular mechanism for the increased apoptosis rates in ADPKD upon loss of TRPP2 channel function.  相似文献   

19.
We have previously described that α-ketoisocaproic acid (KIC), the main metabolite accumulating in maple syrup urine disease (MSUD), increased the in vitro phosphorylation of cytoskeletal proteins in cerebral cortex of 17- and 21-day-old rats through NMDA glutamatergic receptors. In the present study we investigated the protein kinases involved in the effects of KIC on the phosphorylating system associated with the cytoskeletal fraction and provided an insight on the mechanisms involved in such effects. Results showed that 1 mM KIC increased the in vitro incorporation of 32P into intermediate filament (IF) proteins in slices of 21-day-old rats at shorter incubation times (5 min) than previously reported. Furthermore, this effect was prevented by 10 μM KN-93 and 10 μM H-89, indicating that KIC treatment increased Ca2+/calmodulin- (PKCaMII) and cAMP- (PKA) dependent protein kinases activities, respectively. Nifedipine (100 μM), a blocker of voltage-dependent calcium channels (VDCC), DL-AP5 (100 μM), a NMDA glutamate receptor antagonist and BAPTA-AM (50 μM), a potent intracellular Ca2+ chelator, were also able to prevent KIC-induced increase of in vitro phosphorylation of IF proteins. In addition, KIC treatment was able to significantly increase the intracellular cAMP levels. This data support the view that KIC increased the activity of the second messenger-dependent protein kinases PKCaMII and PKA through intracellular Ca2+ levels. Considering that hyperphosphorylation of cytoskeletal proteins is related to neurodegeneration it is presumed that the Ca2+-dependent hyperphosphorylation of IF proteins caused by KIC may be involved to the neuropathology of MSUD patients.  相似文献   

20.
Inorganic pyrophosphate (PPi) is a key metabolite in cellular bioenergetics under chronic stress conditions in prokaryotes, protists and plants. Inorganic pyrophosphatases (PPases) are essential enzymes controlling the cellular concentration of PPi and mediating intracellular pH and Ca2+ homeostasis. We report the effects of the antimalarial drugs chloroquine (CQ) and artemisinin (ART) on the in vitro growth of Philasterides dicentrarchi, a scuticociliate parasite of turbot; we also evaluated the action of these drugs on soluble (sPPases) and vacuolar H+‐PPases (H+‐PPases). CQ and ART inhibited the in vitro growth of ciliates with IC50 values of respectively 74 ± 9 μM and 80 ± 8 μM. CQ inhibits the H+ translocation (with an IC50 of 13.4 ± 0.2 μM), while ART increased translocation of H+ and acidification. However, both drugs caused a decrease in gene expression of H+‐PPases. CQ significantly inhibited the enzymatic activity of sPPases, decreasing the consumption of intracellular PPi. ART inhibited intracellular accumulation of Ca2+ induced by ATP, indicating an effect on the Ca2+‐ATPase. The results suggest that CQ and ART deregulate enzymes associated with PPi and Ca2+ metabolism, altering the intracellular pH homeostasis vital for parasite survival and providing a target for the development of new drugs against scuticociliatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号