共查询到20条相似文献,搜索用时 15 毫秒
1.
Karen L. Wiebe 《Journal of Field Ornithology》2011,82(3):239-248
ABSTRACT Assumptions that populations of cavity‐nesting birds are limited by access to nest sites have largely been based on anecdotal reports or correlative data. Nest‐box‐addition experiments or tree‐cavity‐blocking experiments are potentially rigorous ways to investigate how densities of breeding birds are affected by access to nest cavities. Experimental evidence indicates that natural tree holes are limited in human‐altered landscapes, but the possibility that cavity nests are limited in old growth (unmanaged) forests is less clear. I reviewed 31 nest‐cavity‐removal or addition experiments conducted with 20 species of cavity‐nesting birds in mature forests. Of these 31 experiments conducted with a variety of different species of birds, only 19% reported statistically significant changes in breeding densities. However, none of these studies included data about the reproductive history of individuals colonizing the boxes (i.e., whether birds using the boxes would have otherwise been floaters or that birds excluded from blocked cavities on the plots did not simply move elsewhere), so they provided no strong evidence that the number of breeding pairs was limited by availability of nest sites at the population scale. Although some studies indicate that nest sites are limited at local (plot) scales in old growth forests, there is still little empirical evidence for nest‐site limitation at the population‐ and landscape‐level in mature, unmanaged forests. I review the challenges in designing and interpreting box‐addition experiments and highlight the main gaps in knowledge that should be targeted in the future. 相似文献
2.
Influence of olfactory and visual cover on nest site selection and nest success for grassland‐nesting birds 下载免费PDF全文
Dillon T. Fogarty R. Dwayne Elmore Samuel D. Fuhlendorf Scott R. Loss 《Ecology and evolution》2017,7(16):6247-6258
Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground‐nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite (Colinus virginianus), Eastern Meadowlark (Sturnella magna), and Grasshopper Sparrow (Ammodramus savannarum) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory‐related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species’ nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness‐related benefits. 相似文献
3.
Decaying trees improve nesting opportunities for cavity‐nesting birds in temperate and boreal forests: A meta‐analysis and implications for retention forestry 下载免费PDF全文
Many studies have dealt with the habitat requirements of cavity‐nesting birds, but there is no meta‐analysis on the subject and individual study results remain vague or contradictory. We conducted a meta‐analysis to increase the available evidence for nest‐site selection of cavity‐nesting birds. Literature was searched in Web of Science and Google Scholar and included studies that provide data on the habitat requirements of cavity‐nesting birds in temperate and boreal forests of varying naturalness. To compare nest and non‐nest‐tree characteristics, the following data were collected from the literature: diameter at breast height (DBH) and its standard deviation (SD), sample size of trees with and without active nest, amount of nest and available trees described as dead or with a broken crown, and amount of nest and available trees that were lacking these characteristics. Further collected data included bird species nesting in the cavities and nest‐building type (nonexcavator/excavator), forest type (coniferous/deciduous/mixed), biome (temperate/boreal), and naturalness (managed/natural). From these data, three effect sizes were calculated that describe potential nest trees in terms of DBH, vital status (dead/alive), and crown status (broken/intact). These tree characteristics can be easily recognized by foresters. The results show that on average large‐diameter trees, dead trees, and trees with broken crowns were selected for nesting. The magnitude of this effect varied depending primarily on bird species and the explanatory variables forest type and naturalness. Biome had lowest influence (indicated by ΔAIC). We conclude that diameter at breast height, vitality, and crown status can be used as tree characteristics for the selection of trees that should be retained in selectively harvested forests. 相似文献
4.
为探究长白山生态功能区气候变化特征,本研究利用区域内及周边36个气象站数据与CN05.1格点数据集,采用线性倾向估计法、Mann-Kendall突变检验、累积距平法、Morlet小波分析等方法研究1961—2016年长白山生态功能区内温度(平均气温、四季气温、极端气温)、水分(年降水量、四季降水量、降水日数、相对湿度)、光照(日照时数与日照百分率)和风速因子的时空变化规律.结果表明: 1961—2016年,长白山生态功能区气温升高、日照减少、风速减弱、降水量周期振荡变化.其中,冬季气温[0.45 ℃·(10 a)-1]与最低温度[0.74 ℃·(10 a)-1]大幅上升.年平均风速显著降低[-0.21 m·s-1·(10 a)-1]但并未发生气候突变.年降水日数大幅降低[-7.01 d·(10 a)-1],使其与东北地区气候变化特点有所不同.虽然功能区内年降水量倾向率为16.06 mm·(10 a)-1,但不能以简单的趋势增加或减少来描述降水量变化特征,功能区内降水量变化以26年长周期叠加3年的短周期为主.研究结果对区域生态评估、生态系统响应气候变化、物候变化等研究具有指示意义. 相似文献
5.
Michael J. Liles Tarla Rai Peterson Jeffrey A. Seminoff Alexander R. Gaos Eduardo Altamirano Ana V. Henríquez Velkiss Gadea Sofía Chavarría Jos Urteaga Bryan P. Wallace Markus J. Peterson 《Ecology and evolution》2019,9(4):1603-1622
Anthropogenic climate change is widely considered a major threat to global biodiversity, such that the ability of a species to adapt will determine its likelihood of survival. Egg‐burying reptiles that exhibit temperature‐dependent sex determination, such as critically endangered hawksbill turtles (Eretmochelys imbricata), are particularly vulnerable to changes in thermal regimes because nest temperatures affect offspring sex, fitness, and survival. It is unclear whether hawksbills possess sufficient behavioral plasticity of nesting traits (i.e., redistribution of nesting range, shift in nesting phenology, changes in nest‐site selection, and adjustment of nest depth) to persist within their climatic niche or whether accelerated changes in thermal conditions of nesting beaches will outpace phenotypic adaption and require human intervention. For these reasons, we estimated sex ratios and physical condition of hatchling hawksbills under natural and manipulated conditions and generated and analyzed thermal profiles of hawksbill nest environments within highly threatened mangrove ecosystems at Bahía de Jiquilisco, El Salvador, and Estero Padre Ramos, Nicaragua. Hawksbill clutches protected in situ at both sites incubated at higher temperatures, yielded lower hatching success, produced a higher percentage of female hatchlings, and produced less fit offspring than clutches relocated to hatcheries. We detected cooler sand temperatures in woody vegetation (i.e., coastal forest and small‐scale plantations of fruit trees) and hatcheries than in other monitored nest environments, with higher temperatures at the deeper depth. Our findings indicate that mangrove ecosystems present a number of biophysical (e.g., insular nesting beaches and shallow water table) and human‐induced (e.g., physical barriers and deforestation) constraints that, when coupled with the unique life history of hawksbills in this region, may limit behavioral compensatory responses by the species to projected temperature increases at nesting beaches. We contend that egg relocation can contribute significantly to recovery efforts in a changing climate under appropriate circumstances. 相似文献
6.
Timing of nest vegetation measurement may obscure adaptive significance of nest‐site characteristics: A simulation study 下载免费PDF全文
Mark D. McConnell Adrian P. Monroe Loren Wes Burger Jr. James A. Martin 《Ecology and evolution》2017,7(4):1259-1270
Advances in understanding avian nesting ecology are hindered by a prevalent lack of agreement between nest‐site characteristics and fitness metrics such as nest success. We posit this is a result of inconsistent and improper timing of nest‐site vegetation measurements. Therefore, we evaluated how the timing of nest vegetation measurement influences the estimated effects of vegetation structure on nest survival. We simulated phenological changes in nest‐site vegetation growth over a typical nesting season and modeled how the timing of measuring that vegetation, relative to nest fate, creates bias in conclusions regarding its influence on nest survival. We modeled the bias associated with four methods of measuring nest‐site vegetation: Method 1—measuring at nest initiation, Method 2—measuring at nest termination regardless of fate, Method 3—measuring at nest termination for successful nests and at estimated completion for unsuccessful nests, and Method 4—measuring at nest termination regardless of fate while also accounting for initiation date. We quantified and compared bias for each method for varying simulated effects, ranked models for each method using AIC, and calculated the proportion of simulations in which each model (measurement method) was selected as the best model. Our results indicate that the risk of drawing an erroneous or spurious conclusion was present in all methods but greater with Method 2 which is the most common method reported in the literature. Methods 1 and 3 were similarly less biased. Method 4 provided no additional value as bias was similar to Method 2 for all scenarios. While Method 1 is seldom practical to collect in the field, Method 3 is logistically practical and minimizes inherent bias. Implementation of Method 3 will facilitate estimating the effect of nest‐site vegetation on survival, in the least biased way, and allow reliable conclusions to be drawn. 相似文献
7.
Nature abounds with a rich variety of altruistic strategies, including public resource enhancement, resource provisioning, communal foraging, alarm calling, and nest defense. Yet, despite their vastly different ecological roles, current theory typically treats diverse altruistic traits as being favored under the same general conditions. Here, we introduce greater ecological realism into social evolution theory and find evidence of at least four distinct modes of altruism. Contrary to existing theory, we find that altruistic traits contributing to "resource-enhancement" (e.g., siderophore production, provisioning, agriculture) and "resource-efficiency" (e.g., pack hunting, communication) are most strongly favored when there is strong local competition. These resource-based modes of helping are "K-strategies" that increase a social group's growth yield, and should characterize species with scarce resources and/or high local crowding caused by low mortality, high fecundity, and/or mortality occurring late in the process of resource-acquisition. The opposite conditions, namely weak local competition (abundant resource, low crowding), favor survival (e.g., nest defense) and fecundity (e.g., nurse workers) altruism, which are "r-strategies" that increase a social group's growth rate. We find that survival altruism is uniquely favored by a novel evolutionary force that we call "sunk cost selection." Sunk cost selection favors helping that prevents resources from being wasted on individuals destined to die before reproduction. Our results contribute to explaining the observed natural diversity of altruistic strategies, reveal the necessary connection between the evolution and the ecology of sociality, and correct the widespread but inaccurate view that local competition uniformly impedes the evolution of altruism. 相似文献
8.
One of the five most important global biodiversity hotspots, the Neotropical Atlantic forest supports a diverse community of birds that nest in tree cavities. Cavity‐nesting birds may be particularly sensitive to forestry and agricultural practices that remove potential nest trees; however, there have been few efforts to determine what constitutes a potential nest tree in Neotropical forests. We aimed to determine the characteristics of trees and cavities used in nesting by excavators (species that excavate their own nest cavity) and secondary cavity‐nesters (species that rely on existing cavities), and to identify the characteristics of trees most likely to contain suitable cavities in the Atlantic forest of Argentina. We used univariate analyses and conditional logistic regression models to compare characteristics of nest trees paired with unused trees found over three breeding seasons (2006–2008). Excavators selected dead or unhealthy trees. Secondary cavity‐nesters primarily selected cavities that were deep and high on the tree, using live and dead cavity‐bearing trees in proportion to their availability. Nonexcavated cavities suitable for birds occurred primarily in live trees. They were most likely to develop in large‐diameter trees, especially grapia Apuleia leiocarpa and trees in co‐dominant or suppressed crown classes. To conserve cavity‐nesting birds of the Atlantic forest, we recommend a combination of policies, economic assistance, environmental education, and technical support for forest managers and small‐scale farmers, to maintain large healthy and unhealthy trees in commercial logging operations and on farms. 相似文献
9.
Christoffer Høyvik Hilde Christophe Pélabon Loreleï Guéry Geir Wing Gabrielsen Sébastien Descamps 《Ecology and evolution》2016,6(7):1914-1921
The energetic costs of reproduction in birds strongly depend on the climate experienced during incubation. Climate change and increasing frequency of extreme weather events may severely affect these costs, especially for species incubating in extreme environments. In this 3‐year study, we used an experimental approach to investigate the effects of microclimate and nest shelter on the incubation effort of female common eiders (Somateria mollissima) in a wild Arctic population. We added artificial shelters to a random selection of nesting females, and compared incubation effort, measured as body mass loss during incubation, between females with and without shelter. Nonsheltered females had a higher incubation effort than females with artificial shelters. In nonsheltered females, higher wind speeds increased the incubation effort, while artificially sheltered females experienced no effect of wind. Although increasing ambient temperatures tended to decrease incubation effort, this effect was negligible in the absence of wind. Humidity had no marked effect on incubation effort. This study clearly displays the direct effect of a climatic variable on an important aspect of avian life‐history. By showing that increasing wind speed counteracts the energetic benefits of a rising ambient temperature, we were able to demonstrate that a climatic variable other than temperature may also affect wild populations and need to be taken into account when predicting the effects of climate change. 相似文献
10.
Testing hypotheses about the function of repeated nest abandonment as a life history strategy in a passerine bird 下载免费PDF全文
Nest structures are essential for successful reproduction in most bird species. Nest construction costs time and energy, and most bird species typically build one nest per breeding attempt. Some species, however, build more than one nest, and the reason for this behaviour is often unclear. In the Grey Fantail Rhipidura albiscapa, nest abandonment before egg‐laying is very common. Fantails will build up to seven nests within a breeding season, and pairs abandon up to 71% of their nests before egg‐laying. We describe multiple nest‐building behaviour in the Grey Fantail and test four hypotheses explaining nest abandonment in this species: cryptic depredation, destruction of nests during storm events, and two anti‐predatory responses (construction of decoy nests to confuse predators, and increasing concealment to ‘hide’ nests more effectively). We found support for only one hypothesis – that abandonment is related to nest concealment. Abandoned nests were significantly less concealed than nests that received eggs. Most abandoned nests were not completely built and none received eggs, thus ruling out cryptic predation. Nests were not more likely to be abandoned following storm events. The decoy nest hypothesis was refuted as abandoned nests were constructed at any point during the breeding season and some nests were dismantled and the material used to build the subsequent nest. Thus, Grey Fantails are flexible about nest‐site locations during the nest‐building phase and readily abandon nest locations if they are found to have deficient security. 相似文献
11.
MICHAEL B. ASHCROFT LAURIE A. CHISHOLM KRISTINE O. FRENCH† 《Global Change Biology》2009,15(3):656-667
Current predictions of how species will respond to climate change are based on coarse‐grained climate surfaces or idealized scenarios of uniform warming. These predictions may erroneously estimate the risk of extinction because they neglect to consider spatially heterogenous warming at the landscape scale or identify refugia where species can persist despite unfavourable regional climate. To address this issue, we investigated the heterogeneity in warming that has occurred in a 10 km × 10 km area from 1972 to 2007. We developed estimates by combining long‐term daily observations from a limited number of weather stations with a more spatially comprehensive dataset (40 sites) obtained during 2005–2006. We found that the spatial distribution of warming was greater inland, at lower elevations, away from streams, and at sites exposed to the northwest (NW). These differences corresponded with changes in weather patterns, such as an increasing frequency of hot, dry NW winds. As plant species were biased in the topographic and geographic locations they occupied, these differences meant that some species experienced more warming than others, and are at greater risk from climate change. This species bias could not be detected at coarser scales. The uneven seasonal nature of warming (e.g. more warming in winter, minimums increased more than maximums) means that climate change predictions will vary according to which predictors are selected in species distribution models. Models based on a limited set of predictors will produce erroneous predictions when the correct limiting factor is not selected, and this is difficult to avoid when temperature predictors are correlated because they are produced using elevation‐sensitive interpolations. The results reinforce the importance of downscaling coarse‐grained (∼50 km) temperature surfaces, and suggest that the accuracy of this process could be improved by considering regional weather patterns (wind speed, direction, humidity) and topographic exposure to key wind directions. 相似文献
12.
N. Raventos† 《Journal of fish biology》2006,68(1):305-309
The effects of site characteristics on the distribution of nests and nesting success were examined in the five‐spotted wrasse Symphodus roissali in the north‐western Mediterranean Sea. Nesting males selected nest sites mainly on flat substrata and close to a margin in the rocky littoral strip; however, substratum slope and degree of shelter from wave action were the determinants for a greater success. 相似文献
13.
Many factors drive the organization of communities including environmental factors, dispersal abilities, and competition. In particular, ant communities have high levels of interspecific competition and dominance that may affect community assembly processes. We used a combination of surveys and nest supplementation experiments to examine effects of a dominant ground‐nesting ant (Pheidole synanthropica) on (1) arboreal twig‐nesting, (2) ground‐foraging, and (3) coffee‐foraging ant communities in coffee agroecosystems. We surveyed these communities in high‐ and low‐density areas of P. synanthropica over 2 years. To test for effects on twig ant recruitment, we placed artificial nesting resources on coffee plants in areas with and without P. synanthropica. The first sampling period revealed differences in ant species composition on the ground, in coffee plants, and artificial nests between high‐ and low‐density sites of P. synanthropica. High‐density sites also had significantly lower recruitment of twig ants and had species‐specific effects on twig ant species. Prior to the second survey period, abundance of P. synanthropica declined in the high‐density sites, such that P. synanthropica densities no longer differed. Subsequent sampling revealed no difference in total recruitment of twig ants to artificial nests between treatments. Likewise, surveys of ground and coffee ants no longer showed significant differences in community composition. The results from the first experimental period, followed by survey results after the decline in P. synanthropica densities suggest that dominant ants can drive community assembly via both recruitment and establishment of colonies within the community. 相似文献
14.
Stingless bees are key insects in the tropics, both as pollinators of crops and as contributors to the maintenance of floral diversity through pollination of wild plants. This study investigated the nesting ecology and threats to three stingless bee species: Meliponula bocandei (Spinola), Meliponula ferruginea (Lepeletier) and Dactylurina staudingeri (Gribodo) in three landscapes characterized as forest with logging and wild honey hunting; farmlands that experience annual wild fires and a national park. The study was carried out in July 2011 and February 2012. A total of 93 stingless bee nests were found in 48 ha (density 1.9 nests per ha), 81% in tree cavities and 19% in deserted termite mounds and in the ground. M. ferruginea was the only species using deserted termite mounds (seventeen nests) and in the ground (1 nest). Although tree size (diameter at breast height, DBH >15 cm) and density of large tree were important for nest site selection, there was no influence of tree species. M. bocandei may be restricted in choice of nest site in farmland areas by the absence of trees. Reduced availability of trees in agricultural landscape together with bush burning and wild honey collecting is the main threats to stingless bees survival and abundance which need to be addressed for their successful conservation in Ghana. 相似文献
15.
The selection of a suitable nest‐site is critical for successful reproduction. Species' preferences for nest‐sites have presumably evolved in relation to local habitat resources and/or interactions with other species. The importance of these two components in the nest‐site selection of the Eurasian Honey Buzzard Pernis apivorus was assessed in two study areas in eastern Austria. There was almost no difference in macro‐ and micro‐habitat features between nest‐sites and random plots, suggesting that Honey Buzzards did not base their choice of nest‐site on habitat characteristics. However, nests were placed significantly further from nests of Northern Goshawk Accipiter gentilis than would be expected if nest‐sites had been chosen at random. Furthermore, in one study area Honey Buzzards appeared to favour areas close to human settlements, perhaps indicating a mechanism to avoid Goshawks, which tend to avoid the proximity of humans. No habitat variable was significantly associated with the loss of Honey Buzzard young, but predation was higher in territories closer to breeding pairs of Goshawks at both study sites. Although Honey Buzzards are restricted to nesting in forests, their choice of nest‐site therefore appears to be largely dictated by the distribution of predators. Studies of habitat association may yield misleading results if the effects of predation risk on distribution are not considered. 相似文献
16.
Local adaptation and plasticity pose significant obstacles to predicting plant responses to future climates. Although local adaptation and plasticity in plant functional traits have been documented for many species, less is known about population‐level variation in plasticity and whether such variation is driven by adaptation to environmental variation. We examined clinal variation in traits and performance – and plastic responses to environmental change – for the shrub Artemisia californica along a 700 km gradient characterized (from south to north) by a fourfold increase in precipitation and a 61% decrease in interannual precipitation variation. Plants cloned from five populations along this gradient were grown for 3 years in treatments approximating the precipitation regimes of the north and south range margins. Most traits varying among populations did so clinally; northern populations (vs. southern) had higher water‐use efficiencies and lower growth rates, C : N ratios and terpene concentrations. Notably, there was variation in plasticity for plant performance that was strongly correlated with source site interannual precipitation variability. The high‐precipitation treatment (vs. low) increased growth and flower production more for plants from southern populations (181% and 279%, respectively) than northern populations (47% and 20%, respectively). Overall, precipitation variability at population source sites predicted 86% and 99% of variation in plasticity in growth and flowering, respectively. These striking, clinal patterns in plant traits and plasticity are indicative of adaptation to both the mean and variability of environmental conditions. Furthermore, our analysis of long‐term coastal climate data in turn indicates an increase in interannual precipitation variation consistent with most global change models and, unexpectedly, this increased variation is especially pronounced at historically stable, northern sites. Our findings demonstrate the critical need to integrate fundamental evolutionary processes into global change models, as contemporary patterns of adaptation to environmental clines will mediate future plant responses to projected climate change. 相似文献
17.
Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis 总被引:1,自引:0,他引:1
Donohue K Messiqua D Pyle EH Heschel MS Schmitt J 《Evolution; international journal of organic evolution》2000,54(6):1956-1968
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density. 相似文献
18.
Will Cresswell 《Ibis》2014,156(3):493-510
In most long‐distance migratory birds, juveniles migrate without their parents and so are likely to lack detailed knowledge of where to go. This suggests the potential for stochasticity to affect their choice of wintering area at a large scale (> 1000 km). Adults, in contrast, may re‐use non‐breeding sites that promote their survival, so removing uncertainty from their subsequent migrations. I review the evidence for large‐scale stochastic juvenile site selection followed by adult site fidelity, and then develop a ‘serial‐residency’ hypothesis based on these two traits as a framework to explain both the migratory connectivity and the population dynamics of migrant birds and how these are affected by environmental change. Juvenile stochasticity is apparent in the age‐dependent effects of weather or experimental displacement on the outcome of migration and in the very wide variation in the destinations of individuals originating from the same area. Adults have been shown to be very faithful to their wintering grounds and even to staging sites. The serial residency hypothesis predicts that migrants that show these two traits will rely on an individually unique but fixed series of temporally and spatially linked sites to complete their annual cycle. As a consequence, migratory connectivity will be apparent at a very small scale for individuals, but only at a large scale for a population, and juveniles are predicted to occur more often at less suitable sites than adults, so that survival will be lower for juveniles. Migratory connectivity will arise only through spatial and temporal autocorrelation with local environmental constraints, particularly on passage, and the distribution and age structure of the population may reflect past environmental constraints. At least some juveniles will discover suitable habitat that they may re‐use as adults, thus promoting overall population‐level resilience to environmental change, and suggesting value in site‐based conservation. However, because migratory connectivity only acts on a large scale, any population of migrants will contain individuals that encounter a change in suitability somewhere in their non‐breeding range, so affecting average survival. Differences in population trends will therefore reflect variation in local breeding output added to average survival from wintering and staging areas. The latter is likely to be declining given increasing levels of environmental degradation throughout Africa. Large‐scale migratory connectivity also has implications for the evolutionary ecology of migrants, generally because this is likely to lead to selection for generalist traits. 相似文献
19.
20.
ABSTRACT Recent elevation of critically endangered Bahama Orioles (Icterus northropi) to species status prompted us to evaluate their population status, habitat use, and breeding ecology. From surveys, we estimated that at least 141 to 254 individuals remain globally, with 90 to 162, 24 to 44, and 27 to 48 individuals remaining on North Andros Island, Mangrove Cay, and South Andros Island, The Bahamas, respectively. Orioles were observed nesting exclusively in anthropogenic habitat (residential and agricultural land), but home ranges also included nearby pine forest and coppice (dry broadleaf forest). Most nests (40 of 46, or 87%) were in nonnative coconut palm (Cocos nucifera), with native Sabal palmetto and Thrinax morrisii, and an introduced Brassaia actinophylla also used. Trees selected by orioles for nesting were significantly taller, less likely to have shrubs underneath, further from cover, and had more palm trees nearby than randomly selected palm trees. Three of eight nests with known contents were parasitized by Shiny Cowbirds (Molothrus bonariensis). Lethal yellowing disease recently devastated coconut palms and reduced the number of orioles on North Andros, but palms on Mangrove Cay and South Andros remain healthy. The juxtaposition of anthropogenic habitat to suitable native habitats may be more important than any single factor for Bahama Orioles, especially for breeding adults and fledged young. Conservation of coppice habitat, at high risk for agricultural and residential development, is crucial for survival of this critically endangered synanthropic species. 相似文献