首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf orientations and light environments were recorded for 40 juvenile Pseudopanax crassifolius trees growing in New Zealand in a partially shaded, secondary forest environment. Efficiencies of interception of diffuse and direct light by the observed leaf arrangments were calculated relative to those of three hypothetical leaf arrangements. Canopy gaps above the study plants were unevenly distributed with respect to azimuth and elevation above the horizon. Our results indicate that photosynthetically active radiation (PAR) received from the sides is more important than that received from directly above. In 33 of the plants leaf orientation was found to be significantly clustered towards one azimuth. The mean azimuth and the mean angle of declination were different for each plant. Leaves were steeply declined, and oriented towards the largest canopy gap at each site. Steep leaf angles reduced interception of direct and diffuse PAR when compared to interception by plant with a hypothetical horizontal leaf arrangement. When compared to a hypothetical arrangement with steep leaf declination and a uniform azimuth distribution, the observed leaf arrangement increased the efficiency of interception of diffuse PAR, but had a variable effect on the interception of direct PAR. Results indicate that the developing leaves of juvenile P. crassifolius orient towards the strongest sources of diffuse light, regardless of their value as a source of direct light. By maximising diffuse light interception while reducing direct light interception, leaf orientation may be a partial determinant of the types of habitats exploited by this species. This study emphasises the importance of considering diffuse light interception for plants growing in partially shaded environments.  相似文献   

2.
普晓妍  王鹏程  李苏  鲁志云  宋钰 《广西植物》2021,41(9):1465-1475
附生植物是热带亚热带森林生态系统中物种多样性极高且极其脆弱敏感的生物类群之一。光照被认为是促进附生植物由陆生类群演化而来并决定其生长和分布的关键因素。然而,由于接近林冠和规范性采样的限制,附生植物与光照的关系仍亟待阐述。为揭示附生植物对光强变化的响应和适应策略,该研究以亚热带常绿阔叶林6种附生植物(林冠层木本:鼠李叶花楸、毛棉杜鹃;林冠层草本:狭瓣贝母兰、毛唇独蒜兰;树干区草本:点花黄精、距药姜)为对象,对其在4个光处理梯度下生长的叶片气孔特征及其可塑性进行了对比分析。结果表明:(1) 2种附生小乔木的气孔面积(SA)、气孔密度(SD)、潜在气孔导度指数(PCI)和表皮细胞密度(ECD)均对光强改变显著响应。2种附生兰科植物的SA最大,而SD最小;附生乔木叶片SD和ECD的光响应趋势与陆生植物更相似,而附生草本则出现种间差异。(2) 6种附生植物的气孔、表皮细胞特性及其表型可塑性,在草本-木本、常绿-落叶植物、林冠-树干区之间,均无明显差别。(3)附生植物气孔特性和表皮细胞平均可塑性指数均低于陆生植物。综上结果表明,亚热带常绿阔叶林中附生植物对于光环境变化的适应性相对较弱。不同的附生植物可以通过不同程度地增加叶片SD和ECD来适应高光强生境,并通过对SD和SA的双重调节以增大潜在光合能力从而应对低光胁迫。  相似文献   

3.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

4.
Question: What are the edge effect responses of epiphytic lichen communities in Mediterranean Quercus pyrenaica forest? Location: Central Spain. Methods: We established ten transects perpendicular to a road dissecting a well conserved remnant of Q. pyrenaica forest into two sections. Transects extended from the forest/road edge to 100 m into the forest. Data were collected from seven plots in each transect at different distances from the edge. Variables were grouped into stand scale variables (distance to edge, number of trees per plot, mean diameter per plot, irradiance) and tree scale variables (diameter and height of sampled trees, aspect of the sampled square and relative height of the square). We used General Mixed Linear Models and constrained ordination techniques to test the hypothesis that the spatio‐temporal heterogeneity of light and water controls the occurrence of lichens and bryophytes along the edge‐interior gradient in the Q. pyrenaica forest. Results: Microclimatic parameters vary in a non‐linear way; edge and interior stands showed the most divergent and extreme values. Although the micro‐environment within Mediterranean forests is heterogeneous, interior conditions are apparently suitable for the performance of some specific forest epiphytes. Consequently, species richness does not show significant differences along the gradient. Total epiphytic cover increases towards the forest interior, but distance to the edge together with other predictors at the tree scale (aspect and height of the square) are the most relevant predictors for the composition and structure of these communities. Conclusions: Composition and structure of epiphytic communities in a Mediterranean semi‐deciduous forest are affected by the edge between the forest and the road constructed. Since some extremely rare lichens only occur at interior stands, the conservation of these threatened elements requires urgent conservation measures because well preserved and unmanaged forests in the Mediterranean region are very rare.  相似文献   

5.
This study addresses the question of how size-related changes in leaf morphology and physiology influence light absorption and carbon gain of the epiphytic bromeliad Vriesea sanguinolenta. A geometrically based computer model, Y-plant, was used for the three-dimensional reconstruction of entire plants and for calculation of whole plant light interception and carbon gain. Plants of different sizes were reconstructed, and morphological and physiological attributes of young and old leaves, and small and large plants were combined to examine the individual effects of each factor on light absorption and carbon gain of the plant. The influence of phyllotaxis on light absorption was also explored. Departure of measured divergence angles between successive leaves from the ideal 137.5 degrees slightly decreased light absorption. The only morphological parameter that consistently changed with plant size was leaf shape: larger plants produced more slender foliage, which substantially reduced self-shading. Nevertheless, self-shading increased with plant size. While the maximum rate of net CO(2) uptake of leaves increased linearly with plant size by a factor of two from the smallest to the largest individual, the potential plant carbon gain (based on total foliage area) showed a curvilinear relationship, but with similar numerical variation. We conclude that leaf physiology has a greater impact on plant carbon gain than leaf and plant morphology in this epiphytic bromeliad.  相似文献   

6.
Stress responses in plants imply spatio‐temporal changes in enzymes and metabolites, including subcellular compartment‐specific re‐allocation processes triggered by sudden changes in environmental parameters. To investigate interactions of primary metabolism with abiotic stress, the gin2‐1 mutant, defective in the sugar sensor hexokinase 1 (HXK1) was compared with its wildtype Landsberg erecta (Ler) based on time resolved, compartment‐specific metabolome and proteome data obtained over a full diurnal cycle. The high light sensitive gin2‐1 mutant was substantially delayed in subcellular re‐distribution of metabolites upon stress, and this correlated with a massive reduction in proteins belonging to the ATP producing electron transport chain under high light, while fewer changes occurred in the cold. In the wildtype, compounds specifically protecting individual compartments could be identified, e.g., maltose and raffinose in plastids, myo‐inositol in mitochondria, but gin2‐1 failed to recruit these substances to the respective compartments, or responded only slowly to high irradiance. No such delay was obtained in the cold. At the whole cell level, concentrations of the amino acids, glycine and serine, provided strong evidence for an important role of the photorespiratory pathway during stress exposure, and different subcellular allocation of serine may contribute to the slow growth of the gin2‐1 mutant under high irradiance.  相似文献   

7.
Abstract We tested the hypothesis that contrasting elevations select distinct growth patterns and vegetative phenology in Nothofagus pumilio, a winter deciduous tree that dominates mountain forests of Patagonia. Analysis of saplings maintained under common‐garden conditions for 4 years showed a significant decrease in shoot annual growth, leaf size, and a delay in bud‐break, and leaf expansion with increased elevation of their site of origin. Rapid gain in height seems to be advantageous at low elevation in such light‐demanding species. Lower stature high‐elevation plants have wider branching angles and greater branching ratios (number of branches/number of internodes) than low‐elevation plants. Compact growth at high elevation may be related to strong winds and irradiance. Plants from different elevations had distinct growth patterns during the common‐garden experiment. This could be of importance in Mediterranean‐climate areas characterized by highly unpredictable precipitation regimes. Also, liberation of growth‐suppressed seedlings may follow different environmental signals in low‐ and high‐habitats, which might explain such time‐dependent responses to optimal conditions under cultivation. While these greenhouse‐grown N. pumilio saplings showed heritable differences in plant architectural traits and leafing phenology, it was not clear how the genotypes characteristic of particular elevations would respond to longer growing seasons such as those predicted under global warming.  相似文献   

8.
Increasing evidence suggests that individuals of the same plant species occurring in different microhabitats often show a degree of phenotypic and phytochemical variation. Consequently, insect herbivores associated with such plant species must deal with environment‐mediated changes or variability in the traits of their host plants. In this study, we examined the effects of habitat condition (shaded vs. full‐sun habitats) on plant traits and leaf characteristics of the invasive alien plant, Chromolaena odorata (L.) King & Robinson (Asteraceae). In addition, the performance was evaluated in two generations of a specialist folivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae), on leaves obtained from both shaded and full‐sun habitats. The study was done in an area where the insect was introduced as a biological control agent. Leaves growing in shade were less tough, had higher water and nitrogen content, and lower total non‐structural carbohydrate, compared with leaves growing in full sun. Plants growing in shade had longer leaves and were taller, but above‐ground biomass was significantly reduced compared with plants growing in full sun. In both generations (parents and offspring), P. insulata developed faster and had larger pupal mass, increased growth rate, and higher fecundity when reared on shaded foliage compared with full‐sun foliage. Although immature survival and adult longevity did not differ between habitats, Maw's host suitability index indicated that shaded leaves were more suitable for the growth and reproduction of P. insulata. We suggest that the benefits obtained by P. insulata feeding on shaded foliage are associated with reduced toughness and enhanced nitrogen and water content of leaves. These results demonstrate that light‐mediated changes in plant traits and leaf characteristics can affect insect folivore performance.  相似文献   

9.
Fungal Epiphytes and Endophytes of Coffee Leaves (Coffea arabica)   总被引:1,自引:0,他引:1  
Plants harbor diverse communities of fungi and other microorganisms. Fungi are known to occur both on plant surfaces (epiphytes) and inside plant tissues (endophytes), but the two communities have rarely been compared. We compared epiphytic and endophytic fungal communities associated with leaves of coffee (Coffea arabica) in Puerto Rico. We asked whether the dominant fungi are the same in both communities, whether endophyte and epiphyte communities are equally diverse, and whether epiphytes and endophytes exhibit similar patterns of spatial heterogeneity among sites. Leaves of naturalized coffee plants were collected from six sites in Puerto Rico. Epiphytic and endophytic fungi were isolated by placing leaf pieces on potato dextrose agar without and with surface sterilization, respectively. A total of 821 colonies were isolated and grouped into 131 morphospecies. The taxonomic affinities of the four most common nonsporulating fungi were determined by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region: two grouped with Xylaria and one each with Botryosphaeria and Guignardia. Of the most common genera, Pestalotia and Botryosphaeria were significantly more common as epiphytes; Colletotrichum, Xylaria, and Guignardia were significantly more common as endophytes. Suprisingly, more morphospecies occurred as endophytes than as epiphytes. Differences among sites in number of fungi per plant were significant. Thus epiphytic and endophytic communities differed greatly on a single leaf, despite living only millimeters apart, and both communities differed from site to site. Significant correlations between occurrence of fungal morphospecies suggested that fungi may have positive or negative effects on their neighbors. This is the first quantitative comparison of epiphytic and endophytic fungal floras in any plant, and the first to examine endophytic fungi or epiphytic fungi in leaves of coffee, one of the world’s most valuable crops.  相似文献   

10.
Physiological and morphological differences between Plantago major L. (Plantaginaceae) growing in full sunlight and shaded conditions were examined. Photosynthesis of isolated leaves was saturated by irradiance around 300 μE m−-2 sec−-1 and 170 μE m−-2 sec−-1, respectively. In contrast to previous studies of sun/shade leaf responses, initial slopes of curves from shaded plants are significantly less than those taken from full-sun plants. Within the 400–500 nm and 600–700 nm ranges, leaves 5.0 cm or longer are essentially opaque, transmitting less than 1.25% of incident light. Chlorophyll content per unit leaf area is nearly equivalent for leaves from plants growing under the two extremes in light levels. Morphometric comparisons indicate shaded plants bear fewer leaves, have less leaf overlap, lower total leaf area, and longer petioles than full-sun plants. Leaf elongation rates are lower and the duration between the emergence of successive leaves is longer in shaded plants. Computer analyses of both types of rosette morphology reveal shaded plants have an equal or greater capacity to intercept light than full-sun plants, principally because of the minimization of leaf overlap and the large variation in the deflection angles of leaves in shaded rosette morphologies. Simulations, calculated on the basis of light interception, and taking into account the transition between photosynthate-importing and -exporting leaves, predict relative growth rates for full-sun and shaded rosette morphologies that are in reasonable agreement with empirically determined leaf growth rates. However, the data indicate that significant physiological and morphological differences exist among leaves from a single rosette, and among developmentally comparable leaves from rosettes growing under different ambient light environments. Differences among leaves on a single plant must be accommodated in computerized techniques attempting to simulate light interception and its consequences on potential growth rates.  相似文献   

11.
We investigated leaf and shoot architecture in relation to growth irradiance (Qint) in young and mature trees of a New Zealand native gymnosperm Agathis australis (D. Don) Lindl. to determine tree size-dependent and age-dependent controls on light interception efficiency. A binomial 3-D turbid medium model was constructed to distinguish between differences in shoot light interception efficiency due to variations in leaf area density, angular distribution and leaf aggregation. Because of the positive effect of light on leaf dry mass per area (MA), nitrogen content per area (NA) increased with increasing irradiance in both young and mature trees. At a common irradiance, NA, MA and the components of MA, density and thickness, were larger in mature trees, indicating a greater accumulation of photosynthetic biomass per unit area, but also a larger fraction of support biomass in older trees. In both young and mature trees, shoot inclination angle relative to horizontal, and leaf number per unit stem length decreased, and silhouette to total leaf area ratio (SS) increased with decreasing irradiance, demonstrating more efficient light harvesting in low light. The shoots of young trees were more horizontal and less densely leafed with a larger SS than those of mature trees, signifying greater light interception efficiency in young plants. Superior light harvesting in young trees resulted from more planar leaf arrangement and less clumped foliage. These results suggest that the age-dependent and/or size-dependent decreases in stand productivity may partly result from reduced light interception efficiency in larger mature relative to smaller and younger plants.  相似文献   

12.
The relationship between spatial density and size of plants is an important topic in plant ecology. The self‐thinning rule suggests a ?3/2 power between average biomass and density or a ?1/2 power between stand yield and density. However, the self‐thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log‐linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self‐thinning rule to improve light interception.  相似文献   

13.
In semiarid Mediterranean ecosystems, epiphytic plant species are practically absent, and only some species of palm trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study, we focused on Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils. Our aim was to determine the possible presence of arbuscular mycorrhizal fungi (AMF) in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AMF, as determined by microscopic observation; all of the epiphytic and terrestrial samples analyzed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF operational taxonomic units. The AMF community composition was clearly different between epiphytic and terrestrial root samples, and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.  相似文献   

14.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

15.
Plants usually respond to the changes of growth irradiance by a combination of the physiological modifications in their preexisting leaves and the production of new leaves. However, those with a determinate growth habit produce certain number of leaves in a growing season and cannot produce new leaves when light condition changes. We used an epiphytic orchid with only one leaf produced every growing season to examine whether and how determinate growth species adapt to changing environments after their preexisting leaves mature. Leaf photosynthesis and anatomy of Pleione aurita were investigated at full expansion and at 40 days after the fully expanded leaves were transferred from high to low light or from low to high light. Leaves show large physiological and morphological plasticity to light gradients at full expansion and the transferred leaves exhibited multiple physiological modifications, including reallocation of nitrogen between light harvesting and carbon fixation, and enhancement of thermal dissipation in their new environments, to optimize carbon assimilation and avoid photoinhibition. Irrespective of the various changes either to shade or sun, the sole preexisting leaf could not fully acclimate to new light environments due to the mesophyll thickness constraint. This leads to the consequence that only plants exposed to high light throughout the experiment had a positive annual biomass gain. Our results highlighted the importance of new leaf production in the carbon accumulation during photosynthetic light acclimation, and contribute new insights of epiphytes physiological responses to their highly dynamic arboreal habitat.  相似文献   

16.
Plants in arid environments cope with stress from excessiveirradiance by physiological photoprotection of the photosyntheticapparatus and by structurally reducing the leaf area exposedto the sun (structural photoprotection). We assessed the ecologicalrelevance of structural photoprotection in two plants of contrastingarchitecture co-occurring in a semi-arid environment, usingthe three-dimensional canopy model YPLANT. We compared the roleof crown geometry in avoiding excessive radiation, analysedthe costs of structural photoprotection in terms of reductionof potential carbon gain, and compared these costs with thosedue to seasonal constraints of photosynthesis and tissue ageing.The results of the model simulations indicated that canopy architectureofStipa tenacissima(a tussock grass) andRetama sphaerocarpa(aleafless leguminous shrub) minimized the risk of overheatingand photo-oxidative destruction of the photosynthetic apparatuswith steeply oriented foliage and moderate self-shading. Butthis structural photoprotection imposed an increased cost interms of potential carbon gain. Diurnal and seasonal patternsof light interception by the crown of these plants translatedinto a simulated potential carbon gain only half that of anequivalent, horizontal photosynthetic surface. This reductionin potential carbon gain, due to irradiance avoidance, was similarto that imposed by water shortage.S. tenacissima,which ceasesphotosynthetic activity during periods of drought, exhibitedmore structural avoidance of irradiance thanR. sphaerocarpa,whichremains active throughout the year. This illustrates the influenceof the capacity of plants to utilize light for carbon fixationon the trade-offs between irradiance capture and avoidance.Structural avoidance of excessive radiation efficiently preventsthe risk of damage by intense irradiance, has no special maintenancecosts, and is biomechanically cheaper than enhanced light harvestingby a horizontal canopy, which points to structural photoprotectionas a very effective strategy to cope with high irradiance stressin poor and adverse habitats.Copyright 1999 Annals of BotanyCompany Canopy model, functional architecture, irradiance avoidance, light harvesting, photoinhibition, photoprotection, photosynthesis model, plant architecture,Retama sphaerocarpa,semi-arid environment,Stipa tenacissima,structural photoprotection.  相似文献   

17.
Tropical ferns are characterized by a high diversity of plant life forms, yet there have been few large-scale studies on the functional ecology of these different forms. We examined epiphytic, hemiepiphytic, and terrestrial ferns, and asked whether there are differences in the mineral nutrition and water relations across different growth forms of a diverse assemblage of species. We measured specific leaf area, leaf nitrogen concentrations, and natural abundance of the stable isotopes δ15N and δ13C of 48 fern species from 36 genera across a wide range of habitats at La Selva Biological Station in Costa Rica. We found that epiphytes were significantly different in all measured variables from hemiepiphytic and terrestrial species, and that terrestrial and soil-rooted hemiepiphytes were indistinguishable in all variables excluding SLW. A multivariate analysis revealed that aspects of N nutrition were the most reliable at separating epiphytic species from other life forms. Our study demonstrates that the natural abundance of both C and N as well as N relations and leaf morphology are useful when segregating different plant life forms, and that the N cycle of epiphytic and terrestrial habitats function independently from each other.  相似文献   

18.
We investigated the effects of epiphytes on photosynthetic activity in a seagrass, Zostera marina. Parameters in our chlorophyll (Chl) fluorescence imaging technique, including Fo, Fm, and Fv/Fm, were monitored from leaf surfaces before and after those epiphytes were removed. Because of the uneven distribution of light intensities, Fm values at the margin of an image were underestimated while those in the central region were overestimated. Chl fluorescence emissions from all leaves except the youngest one were altered by the presence of epiphytes, which predominantly inhabited the surfaces of older leaves. Only a few were found lower on the plant where leaves were very close to each other. Regions where the epiphytes had been loosely bound before their gentle removal showed full restoration of photosynthetic performance to control levels afterward. However, only minor recovery of photosynthesis was found in areas that had been riddled with tightly bound epiphytes and were permanently damaged. In years 2002 and 2003, leaf productivity peaked in May and plummeted in November. More epiphytic diatoms were distributed when the seagrass biomass was larger, with pinnate diatoms dominating.  相似文献   

19.
Plant traits are fundamental components of the ecological strategies of plants, relating to how plants acquire and use resources. Their study provides insight into the dynamics of species geographical ranges in changing environments. Here, we assessed the variation in trait values at contrasting points along an environmental gradient to provide insight into the flexibility of species response to environmental heterogeneity. Firstly, we identified how commonly measured functional traits of four congeneric species (Banksia baxteri, B. coccinea, B. media and B. quercifolia) varied along a longitudinal gradient in the South Western Australian Floristic Region. This regional gradient provides significant variation in moisture, temperature and soil nutrients: soil nitrogen content decreases with declining rainfall and increasing temperature. We hypothesized that (i) the regional pattern in trait–environment associations across the species would match those observed on a global scale and (ii) that the direction and slopes of the within‐species relationships would be similar to those across species for each of the measured traits. Along the regional gradient we observed strong shifts in trait values, and cross‐species relationships followed the expected trend: specific leaf area was significantly lower, and leaf Narea and seed dry mass significantly higher, at the drier end of the rainfall gradient. However, traits within species were generally not well correlated with habitat factors: we found weak patterns among populations, either due to the small ecological gradient or perhaps because fine‐scale structuring among populations (at a micro‐evolutionary scale) was low due to high gene flow within species. Understanding how species traits shift as a result of climatic influences, both at the regional (across species) and local (within species) scale, provides insight into plant adaptation to the environment. Such studies have important applications for conservation biology and population management in the face of global change.  相似文献   

20.
Global syntheses of leaf trait scaling relationships report an increase in light interception costs or ‘diminishing returns’ with increase in leaf area. However, variation in light interception costs across ecological gradients and plant strategies to cope up with these costs are not adequately understood. We analyzed leaf area (A) – leaf dry mass (M), leaf water mass (W) – M and W – A scaling relationships in plants occurring in a high altitude region of western Himalaya across environmental gradients to understand changes in light interception cost and metabolic mass component. M represents light interception cost, whereas, W is considered as a proxy of metabolic mass component for liquid phase being the ultimate source of metabolic activity. Trait values were measured from 9278 leaves belonging to 136 dominant species occurring at different sites, slope aspects, elevations and habitat types. Overall, light interception cost increased with increasing A (scaling exponent (α) < 1 in A–M relationship) and metabolic mass component increased disproportionately high with increasing M and A. We found significant differences in scaling exponents of leaf trait relationship between sites, elevations, slope aspects and habitat types, indicating that increase in light interception cost was more evident at higher elevations, southern slopes and open habitats. Further, with increase in light interception cost, metabolic mass component also increased (α > 1 in W–M and W–A relationships). The changes in scaling exponents of various leaf trait relationships across ecological gradients indicated that vegetation of different regions have differences in light interception cost and metabolic mass component. Moreover, increasing light interception cost (increase in mechanical and hydraulic tissues) with increasing A and increasing metabolic mass (leaf thickness) with increasing A and M are favored in high altitude vegetation. This could be a key strategy of high altitude plants for efficient resource capture and use in harsh environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号