首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult anatomy as well as organogenesis of the genital system of the ellobiid pulmonate Ovatella myosotis is investigated in detail by means of serial sectioning and three‐dimensional computer reconstruction and visualization. From the middle portion of the adult, which has four nidamental glands, a spermoviduct leads to a common genital aperture. From here two separate structures, the vas deferens and a groove on the body surface, lead anteriorly. The latter is termed the egg groove because it carries the egg ribbon anteriorly, a function that is recognized here for the first time in the Ellobiidae. The evolution of this structure is discussed. In development, the organ system arises from four separate anlagen: (1) the ovotestis anlage, (2) the pallial anlage giving rise to the hermaphrodite duct, fertilization pouch–spermatheca complex, nidamental glandular complex and spermoviduct, (3) the bursa copulatrix anlage and (4) the anlage of the copulatory organ, vas deferens and egg groove. This development mode strongly resembles that of the siphonariid Williamia radiata, supporting its interpretation as a plesiomorphy in Pulmonata. Similarities in development of primitive pulmonates and evolution in gastropods lead to the assumption that ontogenesis of this organ system reflects evolution to some degree.  相似文献   

2.
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three‐dimensional (3D) organization and allow quantitative analysis of images over time (four‐dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time‐lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant. Birth Defects Research (Part C) 105:1–8, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Mesenchymal stem cells (MSCs) hold profound promise in tissue repair/regeneration. However, MSCs undergo remarkable spontaneous differentiation and aging during monolayer culture expansion. In this study, we found that 2–3 days of three‐dimensional (3D) spheroid culture of human MSCs (hMSCs) that had been expanded in monolayer for six passages increased their clonogenicity and differentiation potency to neuronal cells. Moreover, in accordance with these changes, the expression levels of miRNA which were involved in stem cell potency were changed and levels of histone H3 acetylation in K9 in promoter regions of Oct4, Sox2 and Nanog were elevated. Our results indicate that spheroid culture increases their multi‐potency and changes the epigenetic status of pluripotent genes in hMSCs.  相似文献   

4.
Structural studies using two‐dimensional (2D) images show limitations in understanding the structure and functions of cellular organelle and protein. To overcome the difficulty, over the last few years 3D reconstruction techniques using electron microscopy have been developed at extremely high speed. In this paper, currently available 3D reconstruction techniques of electron microscopy (such as electron tomography, serial section analysis and single particle analysis) are introduced using our data as examples of the application. The 3D structure of mitochondria with the defect of mitochondrial protein in round worm, Caenorhabditis elegans, through electron tomography, the cell–cell interaction in lamina of Drosophila melanogaster by serial‐section using ultramicrotome and high‐voltage electron microscopy and a thin filament related to muscle contraction in Drosophila melanogaster were used for examples of the application. These results through 3D reconstruction reveal the structural changes in a cellular organelle and protein that had not been shown by 2D structure.  相似文献   

5.
In the last four decades, several researchers worldwide have routinely and meticulously exercised cell culture experiments in two‐dimensional (2D) platforms. Using traditionally existing 2D models, the therapeutic efficacy of drugs has been inappropriately validated due to the failure in generating the precise therapeutic response. Fortunately, a 3D model addresses the foregoing limitations by recapitulating the in vivo environment. In this context, one has to contemplate the design of an appropriate scaffold for favoring the organization of cell microenvironment. Instituting pertinent model on the platter will pave way for a precise mimicking of in vivo conditions. It is because animal cells in scaffolds oblige spontaneous formation of 3D colonies that molecularly, phenotypically, and histologically resemble the native environment. The 3D culture provides insight into the biochemical aspects of cell–cell communication, plasticity, cell division, cytoskeletal reorganization, signaling mechanisms, differentiation, and cell death. Focusing on these criteria, this paper discusses in detail, the diversification of polymeric scaffolds based on their available resources. The paper also reviews the well‐founded and latest techniques of scaffold fabrication, and their applications pertaining to tissue engineering, drug screening, and tumor model development.  相似文献   

6.
Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form–function approaches using analogy based on extant animals, limb‐bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three‐dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the development of quadrupedal locomotion via a limited number of functional pathways. Functional anatomy appears to have had a greater effect on moment arms than phylogeny, and the differences identified between individual taxa and individual clades may relate to differences in locomotor performance required for living in different environments or for clade‐specific behaviours.  相似文献   

7.
Essentially we show recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral versus pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode‐inductive surface ectoderm merged inside the oral cavity to form teeth (the ‘outside‐in’ hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the ‘inside‐out’ hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co‐expressed genes defining a competent thickened epithelium and a collaborative neural crest‐derived ectomesenchyme. Simply put, odontodes develop ‘inside and out’, wherever and whenever these co‐expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non‐model organisms.  相似文献   

8.
Abstract:  A new cinctan echinoderm, Graciacystis ambigua gen. et sp. nov. from Cambrian Series 3 rocks of Spain, is described based on more than 100 articulated specimens that range from 6 to 14.5 mm in thecal length. This material shows that Graciacystis ambigua, while plastic in thecal shape, is highly conservative in its thecal construction, with a fixed number of marginal plates and very limited addition of plates in the stele and ventral membrane through ontogeny. Ventral swellings on marginal elements are absent from the smallest specimens and become gradually more marked during growth. A cladistic analysis shows Graciacystis to be a basal cinctan, more derived than Sotocinctus and the Trochocystitidae and as sister group to a large clade formed by Sucocystidae + Gyrocystidae. The determinate growth pattern seen in Graciacystis seems to be the general pattern for all cinctans.  相似文献   

9.
Recently, the improvement of methods for shape analysis has revolutionized the field of morphometrics. While three‐dimensional (3D) imaging technology is increasingly available, many studies of 3D structures still use two‐dimensional (2D) data, even when this may result in the loss of important information. This is particularly conspicuous in the study of small mammals, as devices precise enough for 3D digitization of small objects are the most expensive. Thus, the development of low‐cost methods aimed to recover 3D shape from small mammals would be of wide interest. Photogrammetry allows for obtaining 3D data with a lower cost than other 3D techniques, but it has not been previously applied to the study of small mammals. Accordingly, here we test the suitability of photogrammetric techniques to obtain 3D landmarks on mouse skulls as a model for small mammals. Shape and size of 3D models obtained with photogrammetric techniques were consistent among replicates, even when different sets of photographs were used. The linear measurements obtained from 3D models produced here were highly correlated with measurements obtained with callipers on actual crania, and differences among both sets of measures were smaller than those among individuals in most of the tested measures. These results show for the first time that photogrammetry is a precise technique for 3D shape analysis of small mammals. Photogrammetry also proved to be accurate for obtaining linear measurements between 3D landmarks; however, further studies are needed to demonstrate that this technique is also accurate to recreate 3D shapes.  相似文献   

10.
11.
We used propagation phase contrast X‐ray synchrotron microtomography to study the three‐dimensional (3D) histology of scales of two osteostracans, Tremataspis and Oeselaspis, members of a jawless vertebrate group often cited as the sister group of jawed vertebrates. 3D‐models of the canal systems and other internal structures are assembled based on the virtual thin section datasets and compared with previous models based on real thin sections. The primary homology framework of the canal systems in the two taxa is revised and new histological details are revealed based on the results of this work. There is no separation of vascular canals and lower mesh canals in the Tremataspis scale, contrary to previous results. The secondary upper mesh canals have a limited distribution to the anterior region of the Tremataspis scale. The upper and lower mesh canal systems of Tremataspis have different geometries, inferred to reflect different developmental origins: we interpret the upper system as a probable epithelial invagination, the lower system as entirely vascular. Oeselaspis has no equivalent of the upper mesh canal system. The upper mesh canal system of Tremataspis may have been sensory in function. In Oeselaspis, numerous polyp‐shaped structures opening from the canal system onto the surface of the scale resemble the innervation tracts for neuromast organs. The growth of the Oeselaspis scale proceeds by addition of small odontodes containing unmineralized lacunae, which may further mineralize and become more compact. Our results highlight that 3D‐histological investigation on scales and other dermal skeletons of osteostracans is necessary to fully appreciate the diversity of skeletal histologies in the group. Traditional 3D‐models based on thin sections alone are not reliable and should no longer be used as the basis for homology assessments or functional hypotheses. J. Morphol. 276:873–888, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
13.
A key event in vertebrate evolution is the linkage of the appendicular to the axial skeleton. The present study investigates the developmental dynamics of pelvic girdle morphogenesis in Rana temporaria up until metamorphosis, with respect to its functional and spatio‐temporal organization. The main questions to be addressed are: initial location and the number of elements contributing to pelvic girdle formation, mechanism of bridging between the pelvic anlage and the sacrum and arthrogenesis. Serial histological sections of specimens from Gosner Stages 30 to 41 were bright‐field microscopically examined and 3D‐reconstructed. 3D‐models were merged to 4D‐animations illustrating the complex developmental dynamics through time. The results reveal the initial formation of a single mesenchymal condensation located close to the appendicular skeleton, but far from the axial skeleton. In addition, our analysis detects a thin connective tissue strand in R. temporaria guiding the elongation of the ilium towards the sacrum. The 4D‐visualization allows novel insight into the ilio‐sacral bridging process and the reorientation of the pelvis. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The upper ankle joint forms a single articular plane between organism and the foot and substrate. Singular warp analysis shows that its shape reflects substrate use. This study explores whether the differences in shape are genetic with a developmental trajectory evident during ontogeny or epigenetic and the result of substrate use by the individual. A total of 418 matched distal tibial and proximal talar landmarked surfaces from adult and subadult specimens from 12 diverse catarrhine taxa were studied. Specimens were grouped by molar eruption (M1, M2, and M3) for comparative analysis. Generalized Procrustes analysis, multivariate regression, relative warp analysis, singular warp analysis, and permutation tests were used. Singular warp analysis for the entire cohort was highly significant in the first singular warp, with the adult taxa sorting by substrate use. All 173 subadults clustered with an adult “arboreal” shape profile. Among Hominoidea, adults (M3) sorted by substrate use with Pan paniscus and Hylobatidae assuming an “arboreal” shape separate from Pan troglodytes and the remaining taxa with “terrestrial” shape. Cercopithecoid adults sorted by substrate use as well, with the M3 specimens of Papio hamadryas and Macaca thibetana demonstrating a “terrestrial” shape. Differences in mode of locomotion did not affect the findings in the first singular warp. Results confirmed the convergence of talo‐crural shape among superfamilies based on substrate use and divergence in shape within Pan and Macaca, based on substrate use. The shape differences among adults (M3) are consistent with a plastic response to the behavioral stimulus of substrate use. Am J Phys Anthropol 154:447–458, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
An in vitro three‐dimensional (3D) cell culture system that can mimic organ and tissue structure and function in vivo will be of great benefit for drug discovery and toxicity testing. In this study, the neuroprotective properties of the three most prevalent flavonoid monomers extracted from EGb 761 (isorharmnetin, kaempferol, and quercetin) were investigated using the developed 3D stem cell‐derived neural co‐culture model. Rat neural stem cells were differentiated into co‐culture of both neurons and astrocytes at an equal ratio in the developed 3D model and standard two‐dimensional (2D) model using a two‐step differentiation protocol for 14 days. The level of neuroprotective effect offered by each flavonoid was found to be aligned with its effect as an antioxidant and its ability to inhibit Caspase‐3 activity in a dose‐dependent manner. Cell exposure to quercetin (100 µM) following oxidative insult provided the highest levels of neuroprotection in both 2D and 3D models, comparable with exposure to 100 µM of Vitamin E, whilst exposure to isorhamnetin and kaempferol provided a reduced level of neuroprotection in both 2D and 3D models. At lower dosages (10 µM flavonoid concentration), the 3D model was more representative of results previously reported in vivo. The co‐cultures of stem cell derived neurons and astrocytes in 3D hydrogel scaffolds as an in vitro neural model closely replicates in vivo results for routine neural drug toxicity and efficacy testing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:735–744, 2016  相似文献   

18.
Many musculoskeletal systems, including the skulls of birds, fishes, and some lizards consist of interconnected chains of mobile skeletal elements, analogous to linkage mechanisms used in engineering. Biomechanical studies have applied linkage models to a diversity of musculoskeletal systems, with previous applications primarily focusing on two‐dimensional linkage geometries, bilaterally symmetrical pairs of planar linkages, or single four‐bar linkages. Here, we present new, three‐dimensional (3D), parallel linkage models of the skulls of birds and fishes and use these models (available as free kinematic simulation software), to investigate structure–function relationships in these systems. This new computational framework provides an accessible and integrated workflow for exploring the evolution of structure and function in complex musculoskeletal systems. Linkage simulations show that kinematic transmission, although a suitable functional metric for linkages with single rotating input and output links, can give misleading results when applied to linkages with substantial translational components or multiple output links. To take into account both linear and rotational displacement we define force mechanical advantage for a linkage (analogous to lever mechanical advantage) and apply this metric to measure transmission efficiency in the bird cranial mechanism. For linkages with multiple, expanding output points we propose a new functional metric, expansion advantage, to measure expansion amplification and apply this metric to the buccal expansion mechanism in fishes. Using the bird cranial linkage model, we quantify the inaccuracies that result from simplifying a 3D geometry into two dimensions. We also show that by combining single‐chain linkages into parallel linkages, more links can be simulated while decreasing or maintaining the same number of input parameters. This generalized framework for linkage simulation and analysis can accommodate linkages of differing geometries and configurations, enabling novel interpretations of the mechanics of force transmission across a diversity of vertebrate feeding mechanisms and enhancing our understanding of musculoskeletal function and evolution. J. Morphol. 277:1570–1583, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
In preclinical vision research, cell grading in small animal models is essential for the quantitative evaluation of intraocular inflammation. Here, we present a new and practical optical coherence tomography (OCT) image analysis method for the automated detection and counting of aqueous cells in the anterior chamber (AC) of a rodent model of uveitis. Anterior segment OCT images are acquired with a 100 kHz swept‐source OCT system. The proposed method consists of 2 steps. In the first step, we first despeckle and binarize each OCT image. After removing AS structures in the binary image, we then apply area thresholding to isolate cell‐like objects. Potential cell candidates are selected based on their best fit to roundness. The second step performs the cell counting within the whole AC, in which additional cell tracking analysis is conducted on the successive OCT images to eliminate redundancy in cell counting. Finally, 3D cell grading using the proposed method is demonstrated in longitudinal OCT imaging of a mouse model of anterior uveitis in vivo. Rendering of anterior segment (orange) of mouse eye and automatically counted anterior chamber cells (green). Inset is a top view of the rendering, showing the cell distribution across the anterior chamber.   相似文献   

20.
A three‐dimensional (3D) multicellular tumor spheroid culture array has been fabricated using a magnetic force‐based cell patterning method, analyzing the effect of stromal fibroblast on the invasive capacity of melanoma. Formation of spheroids was observed when array‐like multicellular patterns of melanoma were developed using a pin‐holder device made of magnetic soft iron and an external magnet, which enables the assembly of the magnetically labeled cells on the collagen gel‐coated surface as array‐like cell patterns. The interaction of fibroblast on the invasion of melanoma was investigated using three types of cell interaction models: (i) fibroblasts were magnetically labeled and patterned together in array with melanoma spheroids (direct‐interaction model), (ii) fibroblasts coexisting in the upper collagen gel (indirect‐interaction model) of melanoma spheroids, and (iii) fibroblast‐sheets coexisting under melanoma spheroids (fibroblast‐sheet model). The fibroblast‐sheet model has largely increased the invasive capacity of melanoma, and the promotion of adhesion, migration, and invasion were also observed. In the fibroblast‐sheet model, the expression of IL‐8 and MMP‐2 increased by 24‐fold and 2‐fold, respectively, in real time RT‐PCR compared to the absence of fibroblasts. The results presented in this study demonstrate the importance of fibroblast interaction to invasive capacity of melanoma in the 3D in vitro bioengineered tumor microenvironment. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号