首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Drought affects more people than any other natural disaster but there is little understanding of how ecosystems react to droughts. This study jointly analyzed spatio‐temporal changes of drought patterns with vegetation phenology and productivity changes between 1999 and 2010 in major European bioclimatic zones. The Standardized Precipitation and Evapotranspiration Index (SPEI) was used as drought indicator whereas changes in growing season length and vegetation productivity were assessed using remote sensing time‐series of Normalized Difference Vegetation Index (NDVI). Drought spatio‐temporal variability was analyzed using a Principal Component Analysis, leading to the identification of four major drought events between 1999 and 2010 in Europe. Correspondence Analysis showed that at the continental scale the productivity and phenology reacted differently to the identified drought events depending on ecosystem and land cover. Northern and Mediterranean ecosystems proved to be more resilient to droughts in terms of vegetation phenology and productivity developments. Western Atlantic regions and Eastern Europe showed strong agglomerations of decreased productivity and shorter vegetation growing season length, indicating that these ecosystems did not buffer the effects of drought well. In a climate change perspective, increase in drought frequency or intensity may result in larger impacts over these ecosystems, thus management and adaptation strategies should be strengthened in these areas of concerns.  相似文献   

2.
A major component of climate change is an increase in temperature and precipitation variability. Over the last few decades, an increase in the frequency of extremely warm temperatures and drought severity has been observed across Europe. These warmer and drier conditions may reduce productivity and trigger compositional shifts in forest communities. However, we still lack a robust, biogeographical characterization of the negative impacts of climate extremes, such as droughts on forests. In this context, we investigated the impact of the 2017 summer drought on European forests. The normalized difference vegetation index (NDVI) was used as a proxy of forest productivity and was related to the standardized precipitation evapotranspiration index, which accounts for the temperature effects of the climate water balance. The spatial pattern of NDVI reduction in 2017 was largely driven by the extremely warm summer for parts of the central and eastern Mediterranean Basin (Italian and Balkan Peninsulas). The vulnerability to the 2017 summer drought was heterogeneously distributed over Europe, and topographic factors buffered some of the negative impacts. Mediterranean forests dominated by oak species were the most negatively impacted, whereas Pinus pinaster was the most resilient species. The impact of drought on the NDVI decreased at high elevations and mainly on east and north‐east facing slopes. We illustrate how an adequate characterization of the coupling between climate conditions and forest productivity (NDVI) allows the determination of the most vulnerable areas to drought. This approach could be widely used for other extreme climate events and when considering other spatially resolved proxies of forest growth and health.  相似文献   

3.
Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or land carbon sink is mainly driven by non‐evergreen ecosystems, such as semiarid grasslands, croplands, and boreal forests. Thus, we hypothesize that EBFs have higher stability than other biomes under the increasingly extreme droughts. Here we use long‐term Standardized Precipitation and Evaporation Index (SPEI) data and satellite‐derived Enhanced Vegetation Index (EVI) products to quantify the temporal stability (ratio of mean annual EVI to its SD), resistance (ability to maintain its original levels during droughts), and resilience (rate of EVI recovering to pre‐drought levels) at biome and global scales. We identified significantly increasing trends of annual drought severity (SPEI range: ?0.08 to ?1.80), area (areal fraction range: 2%–19%), and duration (month range: 7.9–9.1) in the EBF biome over 2000–2014. However, EBFs showed the highest resistance of EVI to droughts, but no significant differences in resilience of EVI to droughts were found among biomes (forests, grasslands, savannas, and shrublands). Global resistance and resilience of EVI to droughts were largely affected by temperature and solar radiation. These findings suggest that EBFs have higher stability than other biomes despite the greater drought exposure. Thus, the conservation of EBFs is critical for stabilizing global vegetation productivity and land carbon sink under more‐intense climate extremes in the future.  相似文献   

4.
Satellite‐derived indices of photosynthetic activity are the primary data source used to study changes in global vegetation productivity over recent decades. Creating coherent, long‐term records of vegetation activity from legacy satellite data sets requires addressing many factors that introduce uncertainties into vegetation index time series. We compared long‐term changes in vegetation productivity at high northern latitudes (>50°N), estimated as trends in growing season NDVI derived from the most widely used global NDVI data sets. The comparison included the AVHRR‐based GIMMS‐NDVI version G (GIMMSg) series, and its recent successor version 3g (GIMMS3g), as well as the shorter NDVI records generated from the more modern sensors, SeaWiFS, SPOT‐VGT, and MODIS. The data sets from the latter two sensors were provided in a form that reduces the effects of surface reflectance associated with solar and view angles. Our analysis revealed large geographic areas, totaling 40% of the study area, where all data sets indicated similar changes in vegetation productivity over their common temporal record, as well as areas where data sets showed conflicting patterns. The newer, GIMMS3g data set showed statistically significant (α = 0.05) increases in vegetation productivity (greening) in over 15% of the study area, not seen in its predecessor (GIMMSg), whereas the reverse was rare (<3%). The latter has implications for earlier reports on changes in vegetation activity based on GIMMSg, particularly in Eurasia where greening is especially pronounced in the GIMMS3g data. Our findings highlight both critical uncertainties and areas of confidence in the assessment of ecosystem‐response to climate change using satellite‐derived indices of photosynthetic activity. Broader efforts are required to evaluate NDVI time series against field measurements of vegetation growth, primary productivity, recruitment, mortality, and other biological processes in order to better understand ecosystem responses to environmental change over large areas.  相似文献   

5.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   

6.
As a result of climate and land‐use changes, grasslands have been subjected to intensifying drought regimes. Extreme droughts could interfere in the positive feedbacks between grasses and soil water content, pushing grasslands across critical thresholds of productivity and leading them to collapse. If this happens, systems may show hysteresis and costly management interventions might be necessary to restore predrought productivity. Thus, neglecting critical transitions may lead to mismanagement of grasslands and to irreversible loss of ecosystem services. Rainfall manipulation experiments constitute a powerful approach to investigate the risk of such critical transitions. However, experiments performed to date have rarely applied extreme droughts and have used resilience indices that disregard the existence of hysteresis. Here, we suggest how to incorporate critical transitions when designing rainfall manipulation experiments on grasslands and when measuring their resilience to drought. The ideas presented here have the potential to trigger a perspective shift among experimental researchers, into a new state where the existence of critical transitions will be discussed, experimentally tested, and largely considered when assessing and managing vegetation resilience to global changes.  相似文献   

7.
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate‐resolution imaging spectro‐radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape‐induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape‐induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.  相似文献   

8.
陕西省植被覆盖时空变化及其对极端气候的响应   总被引:5,自引:0,他引:5  
高滢  孙虎  徐崟尧  张世芳 《生态学报》2022,42(3):1022-1033
基于2001—2018年MODIS NDVI数据,从生态分区视角分析陕西省归一化植被指数(NDVI)的时空变化特征,并结合该地区31个气象站点日值数据,探讨NDVI对极端气温和极端降水指数的响应特征。结果表明:(1)陕西省及其各生态区的NDVI变化均显著上升,整体呈南高北低的分布特点,其中秦巴山地落叶与阔叶林生态区(IV)NDVI值最高为0.86,陕北北部典型草原生态区(I)NDVI值最低为0.38。(2)年际尺度上,陕西省NDVI与极端气温暖极值(暖夜日数)和极端降水指数总体呈显著正相关(P<0.05),在陕西省北部NDVI变化主要受极端降水的影响,南部则对极端气温的敏感度更高。(3)多年月尺度上,各生态区NDVI对极端气温冷极值(最低气温、日最低气温的极低值和日最高气温的极低值)和极端气温暖极值(最高气温、日最低气温的极高值和日最高气温的极高值)存在明显的滞后性,滞后时间多为3个月;与极端降水指数(单日最大降水量和连续5日最大降水量)的滞后时间为2个月,说明陕西省内NDVI对极端气候的响应具有显著的滞后效应。  相似文献   

9.
Severe droughts are on the rise in many regions. But thus far, attempts to predict when drought will cause a major regime shift or when ecosystems are resilient, often using plant drought tolerance models, have been frustrated. Here, we show that pressure from natural enemies regulates an ecosystem's resilience to severe droughts. Field experiments revealed that in protected salt marshes experiencing a severe drought, plant‐eating grazers eliminated drought‐stressed vegetation that could otherwise survive and recover from the climate extreme, transforming once lush marshes into persistent salt barrens. These results provide an explicit experimental demonstration for the obligatory role of natural enemies across the initiation, expansion and recovery stages of a natural ecosystem's collapse. Our study highlights that natural enemies can hasten an ecosystem's resilience to drought to much lower levels than currently predicted, calling for integration into climate change predictions and conservation strategies.  相似文献   

10.
《Global Change Biology》2018,24(5):2143-2158
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species‐level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree‐ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring‐width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994–1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi‐arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi‐arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.  相似文献   

11.
董伯纲  于洋  吴秀芹 《生态学报》2022,42(15):6335-6344
气候变化正导致干旱事件发生的强度、频度显著改变,极端气候事件发生的不确定性直接影响陆地生态系统关键生态过程。我国西南地区在2009-2010年发生百年一遇的极端干旱,目前关于植被生长在长时间尺度对此次干旱事件的响应尚不明确。以云南省为研究区,基于多年Normalized difference vegetation index(NDVI)影像数据以及长时间序列气象资料对此次极端事件的干旱遗产效应开展研究,分析了干旱遗产效应的持续时间以及不同植被类型的响应差异。结果表明:1)云南省植被生长在极端干旱事件发生后受到的抑制时间大约持续1-2年,受影响区域主要集中在遭遇降水严重减少的地区;2)海拔2000 m附近为植被对干旱响应最为敏感的区域,海拔高于4000 m的植被生长几乎未受到干旱影响;3)较之草地和农田,森林植被受到的抑制作用更为强烈。研究揭示了极端干旱对云南省植被生长造成的影响,为该地区未来应对极端干旱并有效开展植被恢复提供理论依据。  相似文献   

12.
雷茜  胡忠文  王敬哲  张英慧  邬国锋 《生态学报》2023,43(15):6378-6391
植被是陆地生态系统不可或缺的部分,气候是影响其动态变化的重要驱动因素。因此,探究植被的时空变化及其与气候因子的响应关系,有助于理解陆地生态系统的内在演化机制。目前,不同生态系统尺度下的植被动态变化与气候因子的时间响应关系仍未被完整剖析。因此,为了厘清过去30年不同生态系统植被生长对气候因子的响应关系,利用GIMMS NDVI3g数据和气候资料数据,通过Theil-Sen Median趋势分析和Mann-Kendall检验分析了1985—2015年中国陆地NDVI的时空变化特征,结合时间序列相关分析探究了NDVI变化与降水、温度和饱和水汽压差的内部关联,探讨了中国不同生态系统植被与气候因子间的时间响应机制。结果表明:(1) 1985—2015年中国陆地植被呈现改善趋势,年均NDVI先减小后增加,拐点时间在1995年左右,整体变化率为0.5×10-3/a。农田、森林和草地生态系统的植被显著改善的程度最高,湿地生态系统的植被退化趋势最显著。(2)中国陆地植被NDVI与气候因子的相关性存在明显的空间异质性,且受不同生态系统分区影响。内蒙古高原中部草地生态系统NDVI与降水...  相似文献   

13.
Vegetation response to soil and atmospheric drought has raised extensively controversy, however, the relative contributions of soil drought, atmospheric drought, and their compound droughts on global vegetation growth remain unclear. Combining the changes in soil moisture (SM), vapor pressure deficit (VPD), and vegetation growth (normalized difference vegetation index [NDVI]) during 1982–2015, here we evaluated the trends of these three drought types and quantified their impacts on global NDVI. We found that global VPD has increased 0.22 ± 0.05 kPa·decade−1 during 1982–2015, and this trend was doubled after 1996 (0.32 ± 0.16 kPa·decade−1) than before 1996 (0.16 ± 0.15 kPa·decade−1). Regions with large increase in VPD trend generally accompanied with decreasing trend in SM, leading to a widespread increasing trend in compound droughts across 37.62% land areas. We further found compound droughts dominated the vegetation browning since late 1990s, contributing to a declined NDVI of 64.56%. Earth system models agree with the dominant role of compound droughts on vegetation growth, but their negative magnitudes are considerably underestimated, with half of the observed results (34.48%). Our results provided the evidence of compound droughts-induced global vegetation browning, highlighting the importance of correctly simulating the ecosystem-scale response to the under-appreciated exposure to compound droughts as it will increase with climate change.  相似文献   

14.
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan‐tropical belt (30°N–30°S). We analyzed decadal‐scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982–2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid‐1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time‐dependent regression parameters to study the time evolution of NDVI–climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature‐induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global‐scale effects of climate warming and associated moisture stresses.  相似文献   

15.
Climate change projections anticipate increased frequency and intensity of drought stress, but grassland responses to severe droughts and their potential to recover are poorly understood. In many grasslands, high land‐use intensity has enhanced productivity and promoted resource‐acquisitive species at the expense of resource‐conservative ones. Such changes in plant functional composition could affect the resistance to drought and the recovery after drought of grassland ecosystems with consequences for feed productivity resilience and environmental stewardship. In a 12‐site precipitation exclusion experiment in upland grassland ecosystems across Switzerland, we imposed severe edaphic drought in plots under rainout shelters and compared them with plots under ambient conditions. We used soil water potentials to scale drought stress across sites. Impacts of precipitation exclusion and drought legacy effects were examined along a gradient of land‐use intensity to determine how grasslands resisted to, and recovered after drought. In the year of precipitation exclusion, aboveground net primary productivity (ANPP) in plots under rainout shelters was ?15% to ?56% lower than in control plots. Drought effects on ANPP increased with drought severity, specified as duration of topsoil water potential ψ < ?100 kPa, irrespective of land‐use intensity. In the year after drought, ANPP had completely recovered, but total species diversity had declined by ?10%. Perennial species showed elevated mortality, but species richness of annuals showed a small increase due to enhanced recruitment. In general, the more resource‐acquisitive grasses increased at the expense of the deeper‐rooted forbs after drought, suggesting that community reorganization was driven by competition rather than plant mortality. The negative effects of precipitation exclusion on forbs increased with land‐use intensity. Our study suggests a synergistic impact of land‐use intensification and climate change on grassland vegetation composition, and implies that biomass recovery after drought may occur at the expense of biodiversity maintenance.  相似文献   

16.
为了解雅鲁藏布江流域内植被变化对气候变化响应的时空差异性,引入重心模型,分析和探讨了2002-2014年雅鲁藏布江流域植被的变化特点与气候因子的相关性。结果表明,植被的NDVI(归一化植被指数,Normalized difference vegetation index)重心与降水重心年际迁移方向具有正相关性。雅鲁藏布江流域的月植被NDVI受前0-1月降水影响最大,而不同季节植被的NDVI对降水影响表现出一定的滞后性,其中春季和冬季的植被NDVI均与前一季的降水呈现正相关性。该流域中乔木、灌木对降水反应的滞后性比草本植物要大;生长季的温度变化与植被的生长具有相关性。植被NDVI与月均温的正相关性达到最大的时间段差异较大。因此,植被NDVI和气候因子间的时空异质性研究对于雅鲁藏布江流域的生态环境保护具有重要意义。  相似文献   

17.
彭羽  高英  冯金朝  王德智  姚森  刘洋  薛达元 《生态学报》2013,33(6):1822-1831
我国土地退化严重,且大部分发生在干旱半干旱地区.恢复为何种生态系统类型是生态学研究的重要课题.采用生态功能区划,根据各个生态功能区主体生态系统功能,推导发挥此功能的生态系统类型的方法,识别关键生态系统类型.以内蒙古自治区和林县为例,采用文献调研、实地调查、3S技术等方法,在评价该县生态敏感性、生态服务功能重要性的基础上,将该县划分为3个一级生态区,11个二级生态功能区.根据各个生态功能区的主体生态系统服务功能,分析发挥该功能的可能生态系统类型.再根据全国自然植被区划、气候变化趋势模型以及现状植被类型,识别各个生态功能区的关键生态系统类型.  相似文献   

18.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.  相似文献   

19.
20.
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号