首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

3.
Syringin, sinapyl alcohol 4-O-glucoside, is well known as a plant-derived bioactive monolignol glucoside. In Arabidopsis, recombinant chimeric protein UGT72E3/2 has been previously reported to lead to significantly higher syringin production than the parental enzymes UGT72E2 and UGT72E3. To enhance syringin content in Korean soybean (Glycine max L. ‘Kwangan’), we cloned the UGT72E3/2 gene under the control of the β-conglycinin or CaMV-35S promoter to generate β-UGT72E3/2 and 35S-UGT72E3/2 constructs, respectively, and then transformed them into soybean to obtain transgenic plants using the modified half-seed method. Real-time semi-quantitative PCR (RT-PCR) analysis showed that the UGT72E3/2 gene was expressed in the leaves of the β-UGT72E3/2 and 35S-UGT72E3/2 transgenic lines. HPLC analysis of the seeds and mature tissues of the T2 generation plants revealed that the β-UGT72E3/2 transgenic seeds accumulated 0.15 µmol/g DW of total syringin and 0.29 µmol/g DW of total coniferin, whereas coniferin and syringin were not detected in non-transgenic seeds. Moreover, coniferin and syringin also accumulated at high levels in non-seed tissues, particularly the leaves of β-UGT72E3/2 transgenic lines. In contrast, 35S-UGT72E3/2 lines showed no differences in the contents of coniferin and syringin between transgenic and non-transgenic soybean plants. Thus, the seed-specific β-conglycinin promoter might be an effective tool to apply to the nutritional enhancement of soybean crops through increased syringin production.  相似文献   

4.
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T2–T4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.  相似文献   

5.
6.
The cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) is an insect pest that causes heavy losses in cotton plantations. The need to reduce the use of insecticides for control of this pest has increased steadily, and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) could be an important biopesticide candidate to control this pest. The effect of M. anisopliae on D. peruvianus nymphs and adults using formulations with soybean oil and Agral® was evaluated. Formulation using 10% soybean oil added to 108 conidia mL?1 (grown on used and reused rice) was the most effective for nymph and adult, causing 100% mortality 6 and 7 days after exposure, respectively. The SEM analysis of infected insects showed that M. anisopliae conidia were able to adhere anywhere on the exoskeleton, but were more abundant between the joints. Using the same rice for two batches of growth may be an option for improving commercial conidial production of M. anisopliae and may reduce overall costs. Its effect on D. peruvianus adults opens a new possibility for using this fungus as an alternative to chemical pesticides and the use of M. anisopliae in association with integrate pest management.  相似文献   

7.
The federally endangered Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) has reached critically low numbers. Exotic ants are a potential threat to H. a. ponceanus and other rare butterflies as they can attack immature stages. Ant surveys conducted in subtropical dry forests in Biscayne National Park documented ant species diversity and relative abundance. A caterpillar predator exclusion experiment using physical barriers in different combinations evaluated caterpillar survivorship of both early and late instar caterpillars exposed to different threats. Ant-caterpillar interactions were also documented by placing caterpillars on plants and observing physical interactions between caterpillars and ants. A total of 1418 ants comprising 25 ant species was captured and identified. In canopies of H. a. ponceanus host plants, 243 ants comprising 12 species were found. The four most common ants collected in the host plant canopies were Pseudomyrmex gracilis, Camponotus planatus, Cremastogaster ashmeadi, and Camponotus floridanus. The predator exclusion experiment revealed survivorship was significantly lower for early and late instar caterpillars without any physical barrier, as well as for early instars not protected by a mesh cage. Pseudomyrmex gracilis and C. floridanus were more aggressive towards caterpillars in comparison to other ant species; these two species ranked first and second in the “ant danger index” ranking predatory abilities of the four most common ant species. Pseudomyrmex gracilis is a common arboreal exotic ant in Biscayne National Park and presents a major threat to caterpillars during their earliest life stages.  相似文献   

8.
9.
The plastidic ATP/ADP transporter (AATP) imports adenosine triphosphate (ATP) from the cytosol into plastids, resulting in the increase of the ATP supply to facilitate anabolic synthesis in heterotrophic plastids of dicotyledonous plants. The regulatory role of GmAATP from soybean in increasing starch accumulation has not been investigated. In this study, a gene encoding the AATP protein, named GmAATP, was successfully isolated from soybean. Transient expression of GmAATP in Arabidopsis protoplasts and Nicotiana benthamiana leaf epidermal cells revealed the plastidic localization of GmAATP. Its expression was induced by exogenous sucrose treatment in soybean. The coding region of GmAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of GmAATP significantly increased the sucrose and starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III, and AtSSS IV), and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS, and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild type (WT). These findings suggest that GmAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis. All these results suggest that GmAATP could be used as a candidate gene for developing high starch-accumulating plants as alternative energy crops.  相似文献   

10.
A comparative proteomic approach was performed to analyze the differential accumulation of leaf proteins in response to the symbiosis between Solanum lycopersicum and the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis. Protein profiling was examined in leaves from tomato plants colonized with AMF (M), as well as non-colonized plants fertilized with low phosphate (20 μM P; NM-LP) and non-colonized plants fertilized with regular phosphate Hoagland’s solution (200 μM P; NM-RP). Comparisons were made between these groups, and 2D-SDS-PAGE revealed that 27 spots were differentially accumulated in M vs. NM-LP. Twenty-three out of the 27 spots were successfully identified by mass spectrometry. Two of these proteins, 2-methylene-furan-3-one reductase and auxin-binding protein ABP19a, were up-accumulated in M plants. The down-accumulated proteins in M plants were associated mainly with photosynthesis, redox, and other molecular functions. Superoxide dismutase, harpin binding protein, and thioredoxin peroxidase were down-accumulated in leaves of M tomato plants when compared to NM-LP and NM-RP, indicating that these proteins are responsive to AMF colonization independently of the phosphate regime under which they were grown. 14-3-3 protein was up-accumulated in NM-RP vs. NM-LP plants, whereas it was down-accumulated in M vs. NM-LP and M vs. NM-RP, regardless of their phosphate nutrition. This suggests a possible regulation by P nutrition and AMF colonization. Our results demonstrate AMF-induced systemic changes in the expression of tomato leaf proteins, including the down-accumulation of proteins related to photosynthesis and redox function.  相似文献   

11.
12.
13.
We investigated feeding and oviposition behavior of the Asian citrus psyllid, Diaphorina citri, when exposed to the foraging trails of the convergens ladybird beetle, Hippodamia convergens. Diaphorina citri females feeding on citrus leaves directly exposed to the ladybird adults or treated with trail extract excreted significantly less honeydew droplets than controls. The trail chemicals of the ladybird beetle also decreased oviposition by D. citri females on citrus. In a no-choice experiment, D. citri females preferred to oviposit on control flush and plants than those with ladybird trail-extract treatments. In two-choice experiments, 68.0% of D. citri released into cages exhibited strong selection preference for settling and eventual oviposition on control plants than plants treated with ladybird trail extract. Diaphorina citri eggs were found on all new leaf flush of control plants, whereas only 29.5% of flush on treatment plants were selected for oviposition. The trail chemical deposited by the convergens ladybird beetle elicits repellency of D. citri feeding and oviposition. Therefore, the trail chemicals my contain components that could be useful for behavior-based management of D. citri and HLB disease by reducing psyllid feeding and oviposition.  相似文献   

14.
Cultivating insect pest-resistant varieties is one of the most effective ways to prevent or mitigate pest infestation in Chinese cabbage (Brassica campestris ssp. chinensis). Via the agrobacterium tumefaciens-mediated transformation method, this study introduced the protease inhibitor encoding gene sporamin into two widely cultured cultivars ‘Youdonger’ and ‘Shanghaiqing’, of the common variety of Chinese cabbages (B. campestriss ssp. chinensis var. communis), getting transgenic plants with high sporamin expression. In vitro insect bioassays indicated that, compared with the wild type plants, the transgenic plants exhibited improved resistance to diamondback moth (Plutella xylostella L.) The analysis of inheritance pattern of exogenous sporamin in the progenies of single copy insertion transgenic lines demonstrated that sporamin could be inherited and expressed stably in transgenic progenies. Field survey of the insect resistance under the normal culture condition confirmed the enhanced resistance in transgenic progenies to diamondback moth. Our results strongly suggest that sporamin is an efficient candidate gene for insect-resistant genetic engineering in Chinese cabbage.  相似文献   

15.
16.
17.
Polymorphisms in plants are main factors that determine the diversity of associated animal communities and their population dynamics. Typically, Persicaria lapathifolia var. lapathifolia (Polygonaceae) has no trichomes on leaf surfaces (glabrous type), but a hairy type does sometimes occur. Based on a cultivation experiment, the presence or absence of trichomes is clarified to be under genetic control. To reveal the defensive function of trichomes against herbivores, laboratory experiments were conducted using a major herbivore, Galerucella grisescens (Coleoptera: Chrysomelidae). In both choice and no-choice feeding tests, the glabrous type was significantly more consumed by G. grisescens adults, while the hairy type was not consumed. In the hairy leaf treatment, larval duration tended to become longer, the adult body weight became significantly lower, and adults laid significantly more eggs than in the glabrous leaf treatment. Hairy leaves contained significantly more total phenolics and condensed tannins than glabrous leaves, suggesting that the hairy type allocates more resources for physical and chemical defence. Because no significant differences in leaf consumption were detected in the feeding experiment using powdered host leaves, G. grisescens seems to have adapted to the chemical defences of P. lapathifolia var. lapathifolia. These results clearly indicate that leaf trichomes of P. lapathifolia var. lapathifolia effectively act as a physical defence against G. grisescens.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号