首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separase, an endopeptidase, plays a pivotal role in the separation of sister chromatids at anaphase by cleaving its substrate cohesin Rad21. Recent study suggests that separase is an oncogene. Overexpression of separase induces aneuploidy and mammary tumorigenesis in mice. Separase is also overexpressed and mislocalized in a wide range of human cancers, including breast, prostate, and osteosarcoma. Currently, there is no quantitative assay to measure separase enzymatic activity. To quantify separase enzymatic activity, we have designed a fluorogenic assay in which 7-amido-4-methyl coumaric acid (AMC)-conjugated Rad21 mitotic cleavage site peptide (Ac-Asp-Arg-Glu-Ile-Nle-Arg-MCA) is used as the substrate of separase. We used this assay to quantify separase activity during cell cycle progression and in a panel of human tumor cell lines as well as leukemia patient samples.  相似文献   

2.
《Autophagy》2013,9(4):662-676
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/? mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/? immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

3.
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/− mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/− immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

4.

Background  

The Six1 homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy. However, Six1 is re-expressed in breast cancers, suggesting that its re-instatement in the adult mammary gland may contribute to breast tumorigenesis via initiating a developmental process out of context. Indeed, recent studies demonstrate that Six1 overexpression in the adult mouse mammary gland is sufficient for initiating invasive carcinomas, and that its overexpression in xenograft models of mammary cancer leads to metastasis. These data demonstrate that Six1 is causally involved in both breast tumorigenesis and metastasis, thus raising the possibility that it may be a viable therapeutic target. However, because Six1 is highly expressed in the developing mammary gland, and because it has been implicated in the expansion of mammary stem cells, targeting Six1 as an anti-cancer therapy may have unwanted side effects in the breast.  相似文献   

5.
The WW domain‐containing oxidoreductase (WWOX) is commonly inactivated in multiple human cancers, including breast cancer. Wwox null mice die prematurely precluding adult tumor analysis. Nevertheless, aging Wwox‐heterozygous mice at C3H genetic background develop higher incidence of mammary tumors. We recently generated a Wwox conditional knockout mouse in which loxp sites flank exon 1 in the Wwox allele and showed that total ablation of WWOX in these mice resembles that of conventional targeting of Wwox. Here, we report the characterization of WWOX ablation in mouse mammary gland using MMTV‐Cre transgenic line. We demonstrated that WWOX ablation leads to impaired mammary ductal growth. Moreover, targeted deletion of WWOX is associated with increased levels of fibronectin, a component of the extracellular matrix. In addition, we showed that shRNA knockdown of WWOX in MCF10A breast epithelial cells dramatically increased fibronectin and is associated with enhanced cell survival and impaired growth in three‐dimensional culture Matrigel assay. Taken together our results are consistent with a critical role for WWOX in normal breast development and tumorigenesis. J. Cell. Physiol. 228: 1391–1396, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Overexpression of the cyclin D1 oncogene and inactivation of the p53 tumor suppressor have both been implicated in substantial proportions of sporadic human breast cancers. Transgenic mice with cyclin D1 overexpression targeted to mammary tissue by the MMTV enhancer-promoter have been shown to develop mammary cancers. To investigate the relationship between pathways driven by cyclin D1 overexpression and p53 loss during the development of breast cancers, we crossed MMTV-cyclin D1 mice with p53 heterozygous null (p53+/–) mice. In such crossed mice, cyclin D1-driven mammary neoplasia would need to be substantially accelerated by p53 loss in order for mammary tumors to develop prior to the expected onset of non-mammary tumors characteristic of the p53-deficient background alone. Instead, in mice heterozygous or homozygous for p53 deficiency and simultaneously carrying the MMTV-cyclin D1 transgene, only tumors typically found in p53-deficient mice developed and mammary tumors were not observed. Interestingly, MMTV-cyclin D1/p53+/– mice appeared to develop these non-mammary tumors more rapidly than p53+/– mice, and a majority of the sampled non-mammary tumors from MMTV-cyclin D1/p53+/– mice showed ectopic expression of the MMTV-driven cyclin D1 transgene. Within the constraints of possible genetic background effects and limited sensitivity due to the early emergence of non-mammary tumors, these observations provide no evidence that inactivation of p53 confers a major additional selective advantage to mammary cells overexpressing cyclin D1 in this animal model of human breast cancer. Interestingly, the results do raise the possibility that p53 inactivation might complement or cooperate with cyclin D1 deregulation during the development of some types of non-mammary tumors.  相似文献   

7.
《Autophagy》2013,9(11):2036-2052
Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1+/?;MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).  相似文献   

8.
Separase cleaves cohesin to allow chromosome segregation. Separase also regulates cortical granule exocytosis and vesicle trafficking during cytokinesis, both of which involve RAB-11. We investigated whether separase regulates exocytosis through a proteolytic or non-proteolytic mechanism. In C. elegans, protease-dead separase (SEP-1PD::GFP) is dominant negative. Consistent with its role in cohesin cleavage, SEP-1PD::GFP causes chromosome segregation defects. As expected, partial depletion of cohesin rescues this defect, confirming that SEP-1PD::GFP acts through a substrate trapping mechanism. SEP-1PD::GFP causes cytokinetic defects that are synergistically exacerbated by depletion of the t-SNARE SYX-4. Furthermore, SEP-1PD::GFP delays furrow ingression, causes an accumulation of RAB-11 vesicles at the cleavage furrow site and delays the exocytosis of cortical granules during anaphase I. Depletion of syx-4 further enhanced RAB-11::mCherry and SEP-1PD::GFP plasma membrane accumulation during cytokinesis, while depletion of cohesin had no effect. In contrast, centriole disengagement appears normal in SEP-1PD::GFP embryos, indicating that chromosome segregation and vesicle trafficking are more sensitive to inhibition by the inactive protease. These findings suggest that separase cleaves an unknown substrate to promote the exocytosis of RAB-11 vesicles and paves the way for biochemical identification of substrates.  相似文献   

9.
The mitotic separase cleaves Scc1 in cohesin to allow sister chromatids to separate from each other upon anaphase onset. Separase is also required for DNA damage repair. Here, we isolated and characterized 10 temperature-sensitive (ts) mutants of separase ESP1 in the budding yeast Saccharomyces cerevisiae. All mutants were defective in sister chromatid separation at the restricted temperature. Some esp1-ts mutants were hypersensitive to the microtubule poison benomyl and/or the DNA-damaging agent bleomycin. Overexpression of securin alleviated the growth defect in some esp1-ts mutants, whereas it rather exacerbated it in others. The Drosophila Pumilio homolog MPT5 was isolated as a high-dosage suppressor of esp1-ts cells. We discuss various features of separase based on these findings.  相似文献   

10.
The transforming growth factor alpha (TGF) and its receptor (EGFR) are expressed in many breast cancers. Typically, the progression of estrogen dependent primary breast cancers into a hormone-independent state, due to the loss of the estrogen receptor, is associated with increased levels of TGF and EGFR, leading to aggressive breast carcinomas. The relationship between breast tumorigenesis and TGF is evident in the transgenic mice overexpressing TGF in the mammary glands. In the aromatase transgenic mice, the mammary glands exhibit preneoplastic developments but do not form frank tumors. To test the interactions between growth factor overexpression with tissue estrogen, we have crossed the aromatase transgenic mice with the TGF transgenic mice to produce a double transgenic strain. The histological data for the mammary glands of aromatase x TGF double transgenic mice show that these mice develop hyperplastic changes similar to the aromatase parental strain but no tumors are formed. Consistently, the expression of cyclin D1 and PCNA is diminished in the double transgenic strain as compared to the parental strains. In addition, the expression of TGF, EGF and EGFR are also decreased in the double transgenic strain, suggesting that continuous estrogen presence in the tissue due to aromatase overexpression downregulates the expression of EGFR and its ligands.  相似文献   

11.
12.
The dual mechanism of separase regulation by securin   总被引:8,自引:0,他引:8  
BACKGROUND: Sister chromatid separation and segregation at anaphase onset are triggered by cleavage of the chromosomal cohesin complex by the protease separase. Separase is regulated by its binding partner securin in two ways: securin is required to support separase activity in anaphase; and, at the same time, securin must be destroyed via ubiquitylation before separase becomes active. The molecular mechanisms underlying this dual regulation of separase by securin are unknown.RESULTS: We show that, in budding yeast, securin supports separase localization. Separase enters the nucleus independently of securin, but securin is required and sufficient to cause accumulation of separase in the nucleus, where its known cleavage targets reside. Securin also ensures that separase gains full proteolytic activity in anaphase. We also show that securin, while present, directly inhibits the proteolytic activity of separase. Securin prevents the binding of separase to its substrates. It also hinders the separase N terminus from interacting with and possibly inducing an activating conformational change at the protease active site 150 kDa downstream at the protein's C terminus.CONCLUSIONS: Securin inhibits the proteolytic activity of separase in a 2-fold manner. While inhibiting separase, securin is able to promote nuclear accumulation of separase and help separase to become fully activated after securin's own destruction at anaphase onset.  相似文献   

13.
Androgen receptor (AR) is commonly expressed in both the epithelium of normal mammary glands and in breast cancers. AR expression in breast cancers is independent of estrogen receptor alpha (ERα) status and is frequently associated with overexpression of the ERBB2 oncogene. AR signaling effects on breast cancer progression may depend on ERα and ERBB2 status. Up to 30% of human breast cancers are driven by overactive ERBB2 signaling and it is not clear whether AR expression affects any steps of tumor progression in this cohort of patients. To test this, we generated mammary specific Ar depleted mice (MARKO) by combining the floxed allele of Ar with the MMTV-cre transgene on an MMTV-NeuNT background and compared them to littermate MMTV-NeuNT, Arfl/+ control females. Heterozygous MARKO females displayed reduced levels of AR in mammary glands with mosaic AR expression in ductal epithelium. The loss of AR dramatically accelerated the onset of MMTV-NeuNT tumors in female MARKO mice. In this report we show that accelerated MMTV-NeuNT-dependent tumorigenesis is due specifically to the loss of AR, as hormonal levels, estrogen and progesterone receptors expression, and MMTV-NeuNT expression were similar between MARKO and control groups. MMTV-NeuNT induced tumors in both cohorts displayed distinct loss of AR in addition to ERα, PR, and the pioneer factor FOXA1. Erbb3 mRNA levels were significantly elevated in tumors in comparison to normal mammary glands. Thus the loss of AR in mouse mammary epithelium accelerates malignant transformation rather than the rate of tumorigenesis.  相似文献   

14.
15.
Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors   总被引:10,自引:0,他引:10       下载免费PDF全文
Amplification, overexpression, or rearrangement of the c-rel gene, encoding the c-Rel NF-kappaB subunit, has been reported in solid and hematopoietic malignancies. For example, many primary human breast cancer tissue samples express high levels of nuclear c-Rel. While the Rev-T oncogene v-rel causes tumors in birds, the ability of c-Rel to transform in vivo has not been demonstrated. To directly test the role of c-Rel in breast tumorigenesis, mice were generated in which overexpression of mouse c-rel cDNA was driven by the hormone-responsive mouse mammary tumor virus long terminal repeat (MMTV-LTR) promoter, and four founder lines identified. In the first cycle of pregnancy, the expression of transgenic c-rel mRNA was observed, and levels of c-Rel protein were increased in the mammary gland. Importantly, 31.6% of mice developed one or more mammary tumors at an average age of 19.9 months. Mammary tumors were of diverse histology and expressed increased levels of nuclear NF-kappaB. Analysis of the composition of NF-kappaB complexes in the tumors revealed aberrant nuclear expression of multiple subunits, including c-Rel, p50, p52, RelA, RelB, and the Bcl-3 protein, as observed previously in human primary breast cancers. Expression of the cancer-related NF-kappaB target genes cyclin D1, c-myc, and bcl-xl was significantly increased in grossly normal transgenic mammary glands starting the first cycle of pregnancy and increased further in mammary carcinomas compared to mammary glands from wild-type mice or virgin transgenic mice. In transient transfection analysis in untransformed breast epithelial cells, c-Rel-p52 or -p50 heterodimers either potently or modestly induced cyclin D1 promoter activity, respectively. Lastly, stable overexpression of c-Rel resulted in increased cyclin D1 and NF-kappaB p52 and p50 subunit protein levels. These results indicate for the first time that dysregulated expression of c-Rel, as observed in breast cancers, is capable of contributing to mammary tumorigenesis.  相似文献   

16.
17.
Separase is best known for its function in sister chromatid separation at the metaphase-anaphase transition. It also has a role in centriole disengagement in late mitosis/G1. To gain insight into the activity of separase at centrosomes, we developed two separase activity sensors: mCherry-Scc1(142-467)-ΔNLS-eGFP-PACT and mCherry-kendrin(2059-2398)-eGFP-PACT. Both localize to the centrosomes and enabled us to monitor local separase activity at the centrosome in real time. Both centrosomal sensors were cleaved by separase before anaphase onset, earlier than the corresponding H2B-mCherry-Scc1(142-467)-eGFP sensor at chromosomes. This indicates that substrate cleavage by separase is not synchronous in the cells. Depletion of the proteins astrin or Aki1, which have been described as inhibitors of centrosomal separase, did not led to a significant activation of separase at centrosomes, emphasizing the importance of direct separase activity measurements at the centrosomes. Inhibition of polo-like kinase Plk1, on the other hand, decreased the separase activity towards the Scc1 but not the kendrin reporter. Together these findings indicate that Plk1 regulates separase activity at the level of substrate affinity at centrosomes and may explain in part the role of Plk1 in centriole disengagement.  相似文献   

18.
19.
Regulation of human separase by securin binding and autocleavage   总被引:20,自引:0,他引:20  
BACKGROUND: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated.RESULTS: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro.CONCLUSIONS: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号