首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
古树是人类聚居地最具标志性的生物体,具有极其重要的社会文化和生态价值。由于人类活动和气候变化的影响,全球范围内的古树正面临衰退。如何保护人类聚居地的古树及其社会文化和生态价值是科学家和林业管理者需要共同思考的问题。尽管目前在世界范围内有一定数量的古树研究论文发表,但仍然缺乏对人类聚居地古树研究现状和观点的总结。我们从古树的社会文化和生态价值、分布格局和驱动因素、保护的文化根源和保护实践,以及古树保护面临的挑战等方面对目前人类聚居地古树的研究现状和观点进行了综述。希望能够对未来古树的研究提供一定的思考和启发,并为古树的可持续保护提供建议和参考。  相似文献   

2.
Large trees support unique habitat structures (e.g. hollows) that form over centuries and cannot be provided by small trees. Large trees are also declining in human‐modified landscapes worldwide. One restoration strategy gaining popularity involves adding nest boxes to smaller trees to replicate natural hollows. However, limited empirical research has tested how hollow‐nesting fauna responds to the presence of nest boxes. We asked: can the addition of nest boxes increase tree visitation by hollow‐nesting birds? We conducted a before‐after control‐impact (BACI) experiment using 144 nest boxes and 96 sample trees comprised of three sizes (small [20–50 cm dbh], medium [51–80 cm], and large [>80 cm]) and located in four landscape contexts (reserves, pasture, urban parklands, and urban built‐up areas). We recorded a significant increase in hollow‐nesting bird abundance and richness at large trees after nest box additions. However, the same response was not observed at medium, small, or control trees. We also recorded nonsignificant increases in hollow‐nesting bird abundance and richness at trees in modified landscapes after nest box additions compared to trees in reserves and control trees. Our results suggest that adding nest boxes to smaller‐sized trees may not attract hollow‐nesting birds. Therefore, nest box management strategies may require re‐evaluation as it is often assumed that hollow supplementation will attract hollow‐using fauna and sufficiently ameliorate the loss of large, hollow‐bearing trees. We advocate that large tree retention remains crucial and should be prioritized. Large trees could be effective target structures for habitat restoration, especially in modified landscapes.  相似文献   

3.
Isozymes and DNA markers in gene conservation of forest trees   总被引:6,自引:0,他引:6  
For long-lived plants that have to cope with high temporal and spatial environmental heterogeneity, genetic diversity is of prime importance for species persistence. Detrimental anthropogenic impact on the gene pool of forest trees calls for conservation of genetic resources. Potentials and limitations of isozymes and DNA markers in forest genetic conservation are reviewed. These markers can contribute to conservation with respect to the delimitations of species and hybrid zones, as well as the assessment of genetic diversity within and among populations. Markers are valuable to identify resource populations, since today‘s genetic diversity in forest trees is predominantly the result of plant history (e.g. glacial refuges, migration). Several suggestions have been put forward to optimize sampling of in situ or ex situ populations on the grounds of marker data. Restraint in this area is recommended. Different types of genetic markers (terpenes, isozymes, nuclear and extrachromosomal DNA polymorphisms) and quantitative traits yield different information about genetic diversity and population differentiation. Hence identification of resource populations should not solely be based upon a certain marker type or on quantitative traits alone. The capability of available markers to predict or assess adaptive potentials in forest tree populations is still very limited. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Stand density reductions have been proposed as a method by which old‐growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre‐1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old‐growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree‐ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water‐use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual> 250‐year‐old‐ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose‐δ13C of annual tree rings, soil water availability (estimated from pre‐dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un‐thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response. After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un‐thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood‐specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (ACi curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre‐dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un‐thinned trees in all stands, and was strongly correlated with Δ post‐thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re‐established.  相似文献   

5.
Scattered trees are considered ‘keystone structures’ in many agricultural landscapes worldwide because of the disproportionate effect they have on ecosystem function and biodiversity. Populations of these trees are in decline in many regions. Understanding the processes driving these declines is crucial for better management. Here, we examine the impact of wildfire on populations of this keystone resource. We examined 62 observation plots affected by wildfire and matched with 62 control observation plots where fire was absent. Counts of scattered trees were conducted pre‐fire in 2005 and repeated post‐fire in 2011. Changes in populations were compared between the control and fire‐affected observation plots. Our results show wildfire had a significant local impact, with an average decline of 19.9% in scattered tree populations on burned plots. In contrast, scattered trees increased on average by 5.3% in the control observation plots. The impact of wildfire was amplified (as revealed by greater percentage tree losses) by larger wildfires. Wildfire effects on scattered tree populations are of concern, given a background of other (usually) chronic stressors (often associated with agriculture) and that the frequency and intensity of wildfire are predicted to increase in many landscapes.  相似文献   

6.

Aim

The biodiversity value of scattered trees in modified landscapes is often overlooked in planning and conservation decisions. We conducted a multitaxa study to determine how wildlife abundance, species richness and community composition at individual trees are affected by (1) the landscape context in which trees are located; and (2) the size of trees.

Location

Canberra, south‐eastern Australia.

Methods

Trunk arthropod, bat and bird surveys were undertaken over 3 years (2012–2014) at 72 trees of three sizes (small (20–50 cm DBH), medium (51–80 cm), large (≥80 cm)) located in four landscape contexts (reserves, pasture, urban parklands, urban built‐up areas).

Results

Landscape context affected all taxa surveyed. Trunk arthropod communities differed between trees in urban built‐up areas and reserves. Bat activity and richness were significantly reduced at trees in urban built‐up areas suggesting that echolocating bats may be disturbed by high levels of urbanization. Bird abundance and richness were highest at trees located in modified landscapes, highlighting the value of scattered trees for birds. Bird communities also differed between non‐urban and urban trees. Tree size had a significant effect on birds but did not affect trunk arthropods and bats. Large trees supported higher bird abundance, richness and more unique species compared to medium and small trees.

Main conclusions

Scattered trees support a diversity of wildlife. However, landscape context and tree size affected wildlife in contrasting ways. Land management strategies are needed to collectively account for responses exhibited by multiple taxa at varying spatial scales. We recommend that the retention and perpetuation of scattered trees in modified landscapes should be prioritized, hereby providing crucial habitat benefits to a multitude of taxa.  相似文献   

7.
Urban expansion is a major cause of land use change and presents a significant threat to biodiversity worldwide. Agricultural land is often acquired by local councils and developers to expand urban growth boundaries and establish new housing estates. However, many agricultural landscapes support high biodiversity values, especially farmlands that feature mosaics of native vegetation and keystone habitat such as hollow‐bearing trees. In south‐eastern Australia, many arboreal marsupials including the threatened Squirrel Glider (Petaurus norfolcensis) have populations within peri‐urban zones of expanding rural cities. A key challenge to planners, developers and conservation organisations is the need to maintain habitat for locally rare and threatened species as land undergoes changes in management. Critical to the sustainable development of peri‐urban landscapes is a thorough understanding of the distribution, habitat requirements and resources available to maintain and improve habitat for species dependent on limited resources such as tree cavities. In this management report, we present background information on an integrated research programme designed to evaluate potential impacts of urban development on fauna in the Albury Local Government Area, NSW. We mapped hollow‐bearing trees, erected nest boxes and monitored arboreal marsupials. Information presented in this report provides a blueprint for monitoring arboreal marsupials, including threatened species in other developing regions, and will assist the Albury‐Wodonga local governments in future planning of sustainable living environments.  相似文献   

8.
Summary Australia’s temperate woodlands are environments of cultural and ecological importance and significant repositories of Australia’s biodiversity. Despite this, they have been heavily cleared, much remaining vegetation is in poor condition and many species of plants and animals are threatened. Here, we provide a brief overview of key issues relating to the ecology, management and policy directions for temperate woodlands, by identifying and discussing ten themes. When addressing issues relating to the conservation and management of temperate woodlands, spatial scale is very important, as are the needs for a temporal perspective and a complementary understanding of pattern and process. The extent of landscape change in many woodland environments means that woodland patches, linear networks and paddock trees are critical elements, and that there can be pervasive effects from ‘problem’ native species such as the Noisy Miner (Manorina melanocephala). These consequences of landscape change highlight the challenge to undertake active management and restoration as well as effective monitoring and long‐term data collection. In developing approaches for conservation and management of temperate woodlands, it is essential to move our thinking beyond reserves to woodland conservation and management on private land, and recognise the criticality of cross‐disciplinary linkages. We conclude by identifying some emerging issues in woodland conservation and management. These include the need to further develop non‐traditional approaches to conservation particularly off‐reserve management; the value of documenting approaches and programmes that demonstrably lead to effective change; new lessons that can be learned from intact examples of temperate woodlands; and the need to recognise how climate change and human population growth will interact with conservation and management of temperate woodlands in future decades.  相似文献   

9.
Interior Least Terns (Sternula antillarum) (ILT) are colonial, fish‐eating birds that breed within active channels of large sand bed rivers of the Great Plains and in the Lower Mississippi Valley. Multipurpose dams, irrigation structures, and engineered navigation systems have been present on these rivers for many decades. Despite severe alteration of channels and flow regimes, regulation era floods have remained effective at maintaining bare sandbar nesting habitat on many river segments and ILT populations have been stable or expanding since they were listed as endangered in 1985. We used ILT breeding colony locations from 2002 to 2012 and dispersal information to identify 16 populations and 48 subpopulations. More than 90% of ILT and >83% of river km with suitable nesting habitat occur within the two largest populations. However, replicate populations remain throughout the entire historical, geophysical, and ecological range of ILT. Rapid colonization of anthropogenic habitats in areas that were not historically occupied suggests metapopulation dynamics. The highest likelihood of demographic connectivity among ILT populations occurs across the Southern Plains and the Lower Mississippi River, which may be demographically connected with Least Tern populations on the Gulf Coast. Paired ecological and bird population models are needed to test whether previously articulated threats limit ILT population growth and to determine if management intervention is necessary and where. Given current knowledge, the largest sources of model uncertainty will be: (1) uncertainty in relationships between high flow events and subsequent sandbar characteristics and (2) uncertainty regarding the frequency of dispersal among population subunits. We recommend research strategies to reduce these uncertainties.  相似文献   

10.
11.
Labrador, Canada is the last relatively undeveloped landmass of Boreal and subarctic Canada. Its land area is over 288,000 km2, with less than 1% developed, and a human population of below 30,000. Labrador is greater than 60% forest- and woodland-covered and over 30% tundra, soil and rock barrens. We review the ecology and distribution of forests, woodlands, and related vegetation of Labrador within the context of climate, forest site index, landform, soils, and disturbance. Recent ecosystem management through a public planning process with emphasis on past and future comanagement and development with traditional and western scientific principles is currently underway. Plant–animal interactions, traditional uses by aboriginal groups, and early history are also reviewed.  相似文献   

12.
陕北沙地小叶杨“小老树”的水力适应性   总被引:2,自引:2,他引:2  
陈佳村  李秧秧  左力翔 《生态学报》2014,34(15):4193-4200
以黄土高原"小老树"发生面积最大的树种-小叶杨为例,研究了不同水分生境下(水分相对好的沟道和干旱的梁坡片沙地,分别标记为生境A和生境B)小叶杨的生长、光合、水力学特性等,试图探讨小叶杨"小老树"对干旱生境的适应机制。结果表明:生境B小叶杨树高、地径、1 m树高处直径明显小于生境A,同时其主茎顶端枯枝长度大于生境A;生境B小叶杨叶净光合速率和气孔导度明显低于生境A。两种生境下小叶杨黎明前和正午叶水势无显著差异,生境B小叶杨正午时小枝枝干的比导水率明显低于生境A,但两种生境的比叶导水率则无显著差异,生境B小叶杨的Huber值明显大于生境A。生境B小叶杨枝干的P50(导水率损失50%时所对应的木质部水势)比生境A低约0.76 MPa左右,其气孔关闭的水势比生境A晚0.2 MPa左右,生境B小叶杨水分传输安全距离明显大于生境A。表明干旱生境下小叶杨高Huber值和低气孔导度有助于其叶水分关系维持相对稳定,低光合速率和维持大的水分传输安全距离所需的木质部碳投资增加是小叶杨形成"小老树"的重要原因。  相似文献   

13.
三明地区林木白蚁种类、分布及危害的调查   总被引:4,自引:0,他引:4  
在三明全区范围内设点普查,得知共有林木白蚁2科9属22种,其中中华葫白蚁、海南大白蚁、普见家白蚁、大头家白蚁、高山散白蚁为福建省首次发现危害林木。黄翅大白蚁、闽华歪白蚁、大近歪白蚁、歪白蚁、中华葫白蚁、小象白蚁、海南大白蚁、普见家白蚁、大头象白蚁、蛋头蔡白蚁、黄肢散白蚁、高额散白蚁、高山散白仪、细颏散白蚁、武宫散白蚁、尖唇异白蚁为本地区首次发现危害林木。三明地区白蚁优势种有黑翅土白蚁、黄翅大白蚁和家白蚁。黑翅土白蚁等白蚁对林木造成严重危害,已成为当前林业生产中的一大难题。三明地区林木白蚁区系分布有以下特点:1)林木白蚁种类多,分布广泛,危害较为普遍;2)土白蚁、大白蚁是危害林木的主要类别;3)全区范围白蚁发生情况是由北向南蚁种延增,危害趋重。  相似文献   

14.
Ecosystems are being altered by rapid and interacting changes in natural processes and anthropogenic threats to biodiversity. Uncertainty in historical, current and future effectiveness of actions hampers decisions about how to mitigate changes to prevent biodiversity loss and species extinctions. Research in resource management, agriculture and health indicates that forecasts predicting the effects of near‐term or seasonal environmental conditions on management greatly improve outcomes. Such forecasts help resolve uncertainties about when and how to operationalize management. We reviewed the scientific literature on environmental management to investigate whether near‐term forecasts are developed to inform biodiversity decisions in Australia, a nation with one of the highest recent extinction rates across the globe. We found that forecasts focused on economic objectives (e.g. fisheries management) predict on significantly shorter timelines and answer a broader range of management questions than forecasts focused on biodiversity conservation. We then evaluated scientific literature on the effectiveness of 484 actions to manage seven major terrestrial threats in Australia, to identify opportunities for near‐term forecasts to inform operational conservation decisions. Depending on the action, between 30% and 80% threat management operations experienced near‐term weather impacts on outcomes before, during or after management. Disease control, species translocation/reintroduction and habitat restoration actions were most frequently impacted, and negative impacts such as increased species mortality and reduced recruitment were more likely than positive impacts. Drought or dry conditions, and rainfall, were the most frequently reported weather impacts, indicating that near‐term forecasts predicting the effects of low or excessive rainfall on management outcomes are likely to have the greatest benefits. Across the world, many regions are, like Australia, becoming warmer and drier, or experiencing more extreme rainfall events. Informing conservation decisions with near‐term and seasonal ecological forecasting will be critical to harness uncertainties and lower the risk of threat management failure under global change.  相似文献   

15.
Tree‐holes provide an important microhabitat that is used for feeding, roosting and breeding by numerous species around the world. Yet despite their ecological importance for many of New Zealand's endangered species, few studies have investigated the abundance or distribution of tree‐holes in native forests. We used complementary ground and climbed tree surveys to determine the abundance, distribution and characteristics of tree‐holes in undisturbed Nothofagus forest in the Lewis Pass, New Zealand. We found that hole‐bearing trees were surprisingly abundant compared with many other studies, including Australian Eucalyptus species and American beech. In fact, we estimated as many as 3906 tree‐holes per hectare, of which 963 holes per hectare were potentially large enough to provide roost sites for hole‐nesting bats in New Zealand, while only eight holes per hectare were potentially suitable for specialist hole‐nesting birds. This was of great interest as primary cavity‐excavating animals are absent from New Zealand forests, compared with North America and Australia. Moreover, tree‐hole formation in New Zealand is likely to be dominated by abiotic processes, such as branch breakage from windstorms and snow damage. As has been found in many other studies, tree‐holes were not uniformly distributed throughout the forest. Tree‐holes were significantly more abundant on the least abundant tree species, Nothofagus fusca, than on either N. menziesii or N. solandri. In addition to tree species, tree size was also an important factor influencing the structural characteristics of tree‐holes and their abundance in this forest. Moreover, these trends were not fully evident without climbed tree surveys. Our results revealed that ground‐based surveys consistently underestimated the number of tree‐holes present on Nothofagus trees, and illustrate the importance of using climbed inspections where possible in tree‐hole surveys. We compare our results with other studies overseas and discuss how these are linked to the biotic and abiotic processes involved in tree‐hole formation. We consider the potential implications of our findings for New Zealand's hole‐dwelling fauna and how stand dynamics and past and future forest management practices will influence the structural characteristics of tree‐holes and their abundance in remnant forest throughout New Zealand.  相似文献   

16.
17.
本研究以山西关帝山庞泉沟自然保护区4 hm2云杉次生林样地2010年和2015年两次调查数据为基础,从物种组成、径级结构、空间格局,以及不同径级活立木与枯立木的空间关联性、枯立木不同径级间的相互关联性4个方面,分析5年间活立木与枯立木的数量特征、分布格局及相互关联性.结果 表明:样地内2010年胸径(DBH)≥1 cm...  相似文献   

18.

Aim

Large marine predators, such as cetaceans and sharks, play a crucial role in maintaining biodiversity patterns and ecosystem function, yet few estimates of their spatial distribution exist. We aimed to determine the species richness of large marine predators and investigate their fine-scale spatiotemporal distribution patterns to inform conservation management.

Location

The Hauraki Gulf/Tīkapa Moana/Te Moananui-ā-Toi, Aotearoa/New Zealand.

Methods

We conducted a replicate systematic aerial survey over 12 months. Flexible machine learning models were used to explore relationships between large marine predator occurrence (Bryde's whales, common and bottlenose dolphins, bronze whaler, pelagic and immature hammerhead sharks) and environmental and biotic variables, and predict their monthly distribution and associated spatially explicit uncertainty.

Results

We revealed that temporally dynamic variables, such as prey distribution and sea surface temperature, were important for predicting the occurrence of the study species and species groups. While there was variation in temporal and spatial distribution, predicted richness peaked in summer and was the highest in coastal habitats during that time, providing insight into changes in distributions over time and between species.

Main Conclusions

Temporal changes in distribution are not routinely accounted for in species distribution studies. Our approach highlights the value of multispecies surveys and the importance of considering temporally variable abiotic and biotic drivers for understanding biodiversity patterns when informing ecosystem-scale conservation planning and dynamic ocean management.  相似文献   

19.
20.
Understanding the ecology and behavior of endangered species, such as the tidewater goby, Eucyclogobius newberryi, is important for identifying problems and formulating solutions for species recovery. The tidewater goby forms isolated populations in California's coastal lagoons, creeks, and marshes. Rapid declines in the number of populations led to its listing as an endangered species in 1994. This benthic fish prefers stillwater habitats and feeds on small invertebrates. It is an annual species with an extended breeding season. Fish are larger in marsh habitats than in lagoon or creek habitats. The male digs a spawning burrow, preferably in sand, where he provides care for a single clutch. The tidewater goby is sex-role reversed: females compete more intensely than males for access to mates. The tidewater goby is a species at risk, in part due to narrow habitat preferences, isolation of populations, short lifespan, lack of marine dispersal, and vulnerability to introduced predatory fishes. Attributes that favor its recovery include euryhaline tolerances, rapid reproductive rate, its potential for opportunistic feeding, and the possibility of natural recolonization under certain circumstances. Potential conservation measures include protecting coastal marshes that adjoin creeks and lagoons, maintaining natural hydrologic regimes, preventing artificial breaching of the sandbar at the estuary's mouth, and preventing introductions of predatory fishes. Captive breeding and reintroduction of tidewater gobies are potential tools for recovery, provided that underlying problems of habitat availability and suitability and issues of genetic integrity and disease transmission are addressed. Further research into the tidewater goby's utilization of marsh habitats, dispersal mechanisms, response to artificial breaching events, and metapopulation genetics would provide additional information for management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号