首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
Vegetative cells in dried, mucilagenous mass of Gloeocapsa aeruginosa and Aphanothece nidulans, reticulum of Hydrodictyon reticulatum, mucilagenous mass of Chroococcus minor, and filaments of Oedogonium sp. and Scytonema hofmanni died within 1/2, 1/2, 1/2, 1, 3 and 6 h, respectively, while dried vegetative filaments of Phormidium foveolarum retained under similar storage conditions viability for 4 d. P. foveolarum tolerated 1 mol/L NaCl. The resistance to desiccation in P. foveolarum exhibited similar dependence as that to heat or UV light. The water stress imposed on growing algae either on high-agar solid media or in NaCl-containing liquid media reduced at various levels or altogether inhibited the survival of vegetative parts in all, the cell division in C. minor, G. aeruginosa and A. nidulans, formation of heterocyst and false branch in S. hofmanni, oogonium in Oedogonium sp., and daughter net in H. reticulatum. Heat or UV shock of any level also produced similar effects as that by water stress. P. foveolarum tolerated low light level of 10 and 2 mumol m-2 s-1 and no light longer than the rest of other algae studied. Tolerance of microalgal forms to water, heat or UV stress depends primarily upon cell-wall characteristics or cell-sap osmotic properties rather than their habitats, morphology and prokaryotic or eukaryotic nature.  相似文献   

2.
All dried vegetative cells ofPithophora œdogonia died within 1 h, while those ofCladophora glomerata andRhizoclonium hieroglyphicum retain viability to some extent for 1 and 8 d, respectively, under similar storage conditions. The viability of dried vegetative cells of eitherC. glomerata orR. hieroglyphicum decreased more or less equally when stored either at 20 °C. in light or dark or at 12 °C in dark, but was lost rapidly and drastically when stored at 0 °C in dark. Both dried and wet akinetes ofP. œdogonia were equally more viable when stored at 20 °C in dark than in light, but they lost germination ability when stored either at 12 or 0 °C in dark; this might be either due to loss of viability or dormancy induction at low temperatures. The water stress imposed by growing vegetative filaments either on highly agarized media, in NaCl-supplemented liquid media or in media undergoing progressive air-drying to complete dryness did not induce, but reduced akinete formation inP. œdogonia, decreased zoosporangium formation inC. glomerata andR. hieroglyphicum, decreased or totally suppressed akinete germination inP. œdogonia and zoospore germination inC. glomerata andR. hieroglyphicum. Akinetes ofP. œdogonia formed under water stress were equally viable, while zoosporangia ofC. glomerata andR. hieroglyphicum formed under water stress were comparatively less viable than those formed without any water stress. Akinete germination inP. œdogonia and zoospore germination inC. glomerata andR. hieroglyphicum were comparatively more sensitive to water stress than the formation of akinetes and zoosporangia. The akinete germination inP. œdogonia was more sensitive to water stress than zoospore germination inC. glomerata andR. hieroglyphicum and it might be either due to their large size, thick wall or dense content.  相似文献   

3.
Lack of nitrogen, phosphorus, or all nutrients, extremes of pH (<4, >11), presence of ‘heavy’ metals (Co, Cu, Zn, Hg, Pb; 0.5–10 ppm) or pesticides (carbofuran, 2,4-D, dithane, phorate, or bavistin; 1–50 ppm) decreased to various extent or completely inhibited the survival of vegetative cells in all studied algae. The formation of akinetes, thier viability and germination inAnabaena iyengarii, Westiellopsis prolifica, Nostochopsis lobatus andPithophora oedogonia and the formation of zoosporangia, their viability, and the germination of zoospores inCladophora glomerata andRhizoclonium hieroglyphicum was affected. The formation of viable akinetes or zoosporangia was shown to be directly linked with vegetative cell survival and growth; it could not be induced by any chemical stress imposed.  相似文献   

4.
Using two species ofSpirogyra and one species ofZygnema, it was demonstrated on a quantitative basis that these algal filaments grow while twisting around their own axis. The sense of spiral growth of the cell wall inSpirogyra-1 was always left-handed being coincident with the sense of chloroplast helix. InSpirogyra-2, the growth vector of the cell wall was likewise left-handed in most cases, but there occurred right-handed growth also. InZygnema both left-handed and right-handed senses of spiral growth were found in nearly equal frequencies. Besides the natural cell wall growth, the effects of longitudinal tension and turgor pressure on elongation and twisting of the filaments were briefly studied. It was shown that the cell wall of Zygnemataceae exhibited mechanical anisotropy in helical direction.  相似文献   

5.
The formation of sperm cells has been examined ultrastructurally in the tricellular pollen grains ofGalium mollugo L. (Rubiaceae).Trichodiadema setuliferum Schwantes (Aizoaceae), andAvena sativa L. (Poaceae). After detachement from the intine the generative cell of all three species lies free within the vegetative cytoplasm. The two sperm cells are built inTrichodiadema andAvena by a single separating wall, while inGalium mollugo two independent walls are formed. However, both mechanisms separate the two male gametes completely.  相似文献   

6.
Spirogyra sp. Link was found to be parasitized by filamentous fungi tentatively identified as Saprolegnia asterophora de Bary and Pythium gracile Schenk, in field samples and when maintained in unaltered pond water in an 18 h fluorescent light–6 h dark regime at 18 ± 2°C. Collections were made periodically between March 1978, and November 1979, from a pond in Mill Seek Sanctuary near Oyster Bay, Nassau Co., Long Island, New York. Initially, less than 1% of the total field population of Spirogyra sp. was infected by either fungal parasite with Saprolegnia asterophora being the dominant parasite present generally alone in most samples or present in 80–95% of the total number of infected algal filaments when occurring concurrently with P. gracile. However, in the laboratory, approximately 100% of the Spirogyra sp. filaments in any given sample became infected by Saprolegnia asterophora and/or P. gracile within a 1—2 wk and 3–4 wk period, respectively, with vegetative hyphae involved in the spread of infection to neighboring algal filaments. Infection of algal filaments occurred at random points with cell to cell hyphal extension within the filament causing disruption of host cells. Development of S. asterophora, and possibly P. gracile, sexual reproductive structures was common in relation with the host with asexual sporangial production not observed. Saprolegnia asterophora and P. gracile were cultured on glucose, yeast extract, malt extract (GYM) medium from infected Spirogyra sp. filaments, with infection of healthy algal filaments using these cultures by Saprolegnia asterophora, but not by P. gracile, induced in the laboratory. Growth responses and tropic responses of the fungi to the algal host could not be demonstrated.  相似文献   

7.
Shell-boring microthalli in Helminthocladia and Scinaia (Nemaliales, Rhodophyta). Spores shed from pink mussel shells were shown to develop into branched monosiphonous thalli, their filaments penetrating into shell fragments. Isolates from four single germlings were cultivated. Two of these produced gametophytes ofHelminthocladia andScinaia; the others have so far only reproduced by tetraspores or monospores. Evidently the microthalli of some genera of the Nemaliales — which are, with the exception ofNemalion multifidum, known only from cultures — are shell-inhabiting and have therefore not been found in nature. The adult algae occur mainly on shells and CaCO3 substrates. Until the beginning of the century,Helminthocladia andScinaia frequently occurred at Helgoland, but they have not been found there for more than 50 years. Their microthalli, however, are still present as shell-boring algae. This study is intended to stimulate similar ones in other genera of the Nemaliales so as to obtain a broader basis for discussion of systematic and phylogenetic relationships.  相似文献   

8.
Summary In the fire ant,Solenopsis invicta, some winged virgin queens are known to shed their wings (dealate) upon removal of the mated mother queen. These virgin queens then develop their ovaries and begin to lay eggs, thereby foregoing the option of leaving on mating flights and attempting to found their own colonies. Such a response of virgin queens to queenlessness has not been reported for other ants. In order to determine if virgin queens of some other fire ants (subgenusSolenopsis) would respond in the same way, experiments were conducted onS. richteri, hybridS. invicta/richteri andS. geminata, a member of a species complex different from that of the other taxa. Just as inS. invicta, virgin queens ofS. richteri and the hybrid dealated and began to lay eggs within days of the removal of the queen. In addition, workers executed many of the reproductively active virgin queens, a phenomenon also found inS. invicta. In contrast, virgin queens ofS. geminata did not dealate or quickly begin to lay eggs upon separation from the queen. Reasons for the variability in the response of virgin queens of the different species may be 1) higher probability of reproductive success for unmated dealated queens compared to normal claustral founding inS. invicta andS. richteri linked to relatively frequent loss of the mother queen; or 2) phylogenetic constraint.  相似文献   

9.
Two subtracted cDNA libraries ofDunaliella salina (Volvocales, Chlorophyceae) under different hyperosmotic shock were constructed using the suppression subtractive hybridization (SSH) method. The mRNA isolated from algae grown without stress was used as a “driver”, and the mRNAs isolated from algae 16 h (short-term treatment) or 7 d (long-term treatment) after salt stress were used as “testers”. The differentially expressed cDNA fragments inD. salina under salt stress were identified by screening these 2 libraries. Two cDNA fragments,D27 andD114, were identified from clones pL27 and pL114 after the long-term treatment. Three cDNA fragments,D21, D39, andD88, were identified from clones pSh21, pSh39, and pSh88 after the short-term treatment. The homology analysis revealed that D27 was highly similar (91%) to the subunit V of PS I reaction center inChlamydomonas reinhardtii. D21 was similar to fructose-1,6-diphosphate aldolase (78.4%). After searching GenBank with the sequences ofD39, D88, andD114, no similar sequences were found. Northern analysis revealed that the expression levels of all 5 cDNAs were increased significantly after salt stress. This means that SSH can be used in cloning differentially expressed cDNAs inD. salina under salt stress. The expression ofD27, D21, andD88 wasde novo induced by salt stress, and the expression ofD114 andD39 was increased from a relatively lower level; this indicates that all 5 cDNAs might exert an influence on the alga under hyperosmotic shock.  相似文献   

10.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

11.
The development of the carposporophytes ofBatrachospermum cayennense, B. beraense andB. hypogynum is observed. The carpogonium bearing branch ofB. cayennense is very long and its cells are differentiated from those of the vegetative fascicles in size and shape. The trichogyne nucleus ofB. cayennense andB. beraense is not recognized. In the above two species it is observed that after contact with the trichogyne the nucleus of the spermatium divides into two daughter nuclei, one of which fuses with the female nucleus, while the other remains in the trichogyne. InB. beraense the fertilized carpogonium is divided transversely and the gonimoblast filaments are produced from the divided carpogonium. The protoplasmic connection between the carpogonium and the hypogynous nutritive cell is especially pronounced inB. hypogynum. Carpospores ofB. hypogynum germinate within the carposporangia and young germlings often throw away original carpospores, hence these young germlings look like gemmae.  相似文献   

12.
The effects of 4 or 8 drought cycles on four grass species,Cenchrus pennisetiformis, Leptochloa fusca, Panicum turgidum, andPennisetum divisum were assessed in a pot experiment. There were significant differences between the species in biomass production under water stress.C. pennisetiformis andP. turgidum produced significantly greater fresh and dry matter thanP. divisum and especially thanL. fusca. L. fusca had the lowest andP. divisum highest osmotic potentials compared with the other species after the completion of 4 or 8 drought cycles. Osmotic adjustment (difference between osmotic potential of droughted/rehydrated plants and control plants) was highest inL. fusca. The stomatal conductance was significantly decreased with increased drought stress inC. pennisetiformis. The elasticity ofC. pennisetiformis, P. turgidum andP. divisum increased with increase in number of drought cycles, whereas that ofL. fusca remained unchanged.L. fusca andP. turgidum had the lowest leaf hydration of all species after 8 drought cycles. The chlorophyllsa andb in all species remained unaffected by drought treatments. The proline content ofC. pennisetiformis andL. fusca increased significantly with increased drought stress, whereas that ofP. turgidum remained unaffected after 4 or 8 drought cycles.L. fusca synthesized great amount of leaf soluble proteins during 8 drought cycles, whereasP. divisum had low protein content after 4 drought cycles. The protein contents ofC. pennisetiformis andP. turgidum remained unaffected after 8 drought cycles. The leaf epicuticular wax ofL. fusca increased consistently with increased drought stress, but leaf wax ofP. divisum increased only at the highest drought stress and that ofC. pennisetiformis andP. turgidum increased after 4 drought cycles. On the basis of these results it was established thatC. pennisetiformis andP. turgidum were the most tolerant,P. divisum intermediate, andL. fusca the most sensitive to drought stress. The osmotic adjustment did not positively correlate with the degree of drought resistance.  相似文献   

13.
Kelp gametophytes were previously observed in nature living endophytically in red algal cell walls. Here we examine the interactions of two kelp species and six red algae in culture. Gametophytes of Nereocystis luetkeana (Mertens) Postels et Ruprecht became endophytic in the cell walls of Griffithsia pacifica Kylin and Antithamnion defectum Kylin, and grew epiphytically in high abundance on G. japonica Okamura and Aglaothamnion oosumiense Itono. Alaria esculenta (Linnaeus) Greville from the Atlantic coast of Nova Scotia became endophytic in Aglaothamnion oosumiense, Antithamnion defectum, Callithamnion sp., G. japonica, G. pacifica, and Pleonosporium abysicola Gardner, all from the Pacific Ocean. Some cultures were treated with phloroglucinol before infection to thicken the cell walls. The endophytic gametophytes were smaller and grew more slowly than gametophytes epiphytic on the same host. N. luetkeana failed to become endophytic in some of the potential hosts, and this may reflect host specificity, or culture artifacts. This work improves our understanding of the process of infection of red algae by kelp gametophytes, and broadens our knowledge of host specificity in endophytic symbioses.Communicated by K. Lüning  相似文献   

14.
Diversity of the filamentous green algae in the genus Spirogyra (Zygnematophyceae) was investigated from more than 1,200 stream samples from California. We identified 12 species of Spirogyra not previously known for California (CA), including two species new to science, Spirogyra californica sp. nov. and Spirogyra juliana sp. nov. Environmental preferences of the Californian species are discussed in the light of their restricted distribution to stream habitats with contrasting nutrient levels. We also investigated the systematic relationships of Spirogyra species from several continents using the chloroplast‐encoded genes ribulose‐1,5‐bisphosphate carboxylase/hydrogenase large subunit (rbcL) and the beta subunit of the ATP synthase (atpB). Californian species were positioned in most major clades of Spirogyra. The phylogeny of Spirogyra and its taxonomic implications are discussed, such as the benefits of combining structural and molecular data for more accurate and consistent species identification. Considerable infraspecific genetic variation of globally distributed Spirogyra species was observed across continental scales. This finding suggests that structurally similar species from distant regions may be genetically dissimilar and that Spirogyra may contain a large number of cryptic species. Correlating the morphological and genetic variation within the genus will be a major challenge for future researchers.  相似文献   

15.
Field observations of changes in the populations of aquatic weeds and phytoplankton have confirmed that aquatic weeds have antagonistic activity toward phytoplankton. Nutritional studies in the laboratory indicate that cultures of the aquatic weeds, Myriophyllum sp., Ceratophyllum sp., and duckweed (Lemma minor L.); liquid cultures of barley (Hordeum vulgare L., Dickson variety); and cultures of the filamentous green algae, Cladophora sp. and Pithophora oedogonium (Mont.) Withrock, will remain relatively free of epiphytes or competing phytoplankton if the cultures are nitrogen-limited. Field observations of Cladophora sp. have confirmed that the growth of epiphytes on the Cladophora is related to conditions of surplus available nitrogen compounds. It is proposed that this antagonistic activity may be due to a “nitrogen sink” effect in which the aquatic weeds or filamentous green algae prevent the growth of contaminating algae by competition for the limited nitrogen compounds available. However, the presence of bacteria-sized organisms which have selective toxicity to certain algae indicates that perhaps multiple factors exist. Discussed are the ecological implications of associations of certain algae with bacteria that have selective toxicities for other species of algae under certain environmental conditions such as nitrogen-limited growth.  相似文献   

16.
The taxonomic positions ofRetzia, Desfontainia, andNicodemia have been much discussed, and all three genera have been included inLoganiaceae (Gentianales). We have made a cladistic analysis ofrbcL gene sequences to determine the relationships of these taxa toGentianales. Four newrbcL sequences are presented; i.e., ofRetzia, Desfontainia, Diervilla (Caprifoliaceae), andEuthystachys (Stilbaceae). Our results show thatRetzia, Desfontainia, andNicodemia are not closely related toLoganiaceae or theGentianales. Retzia is most closely related toEuthystachys and is better included inStilbaceae. The positions ofDesfontainia andNicodemia are not settled, butDesfontainia shows affinity for theDipsacales s.l. andNicodemia for theLamiales s.l.  相似文献   

17.
Summary Phytoplankton species shifts and succession phenomenona in lakes of increasing trophic state were considered, using the basic information on the growth kinetics of the species involved. One of the most obvious signs of advanced eutrophication is the dominance of cyanobacteria (blue-green algae). Striking examples are the shallow, hypertrophic Dutch lakes The Veluwerandmeren (e.g., Wolderwijd and Veluwemeer), whereOscillatoria agardhii, a non-N2-fixing cyanobacterium, has become dominant over the green algae, diatoms and N2-fixing cyanobacteria (BERGER, 1975).We have studied the natural population ofO.agardhii during the growing season, by using physiological indicators, and could adduce that the natural population was successively growing under phosphorus, light, or nitrogen limitation (ZEVENBOOM and MUR, 1978a,b; ZEVENBOOMet al., 1982). One might expect that during the period of nitrogen limitation the N2-fixing speciesAphanizomenon flos-aquae would be favoured and would be able to outgrow the nitrogen-limitedO.agardhii. However, in these lakes,A. flos-aquae was present only in few numbers and a succession fromO. agardhii toA. flos-aquae did not occur. Although field observations may give some indication, they cannot give decisive answers to the question which factor is triggering the observed species shifts and species dominance in natural waters. Such answers can only be obtained from growth kinetic and physiological data of the species involved. In our opinion, the most important factor to consider is the availability of light energy, which decreases with increasing eutrophication.The hypothesis was proposed by Mur and coworkers (MURet al., 1978) that in hypertrophic lakes the prevailing light conditions (low light irradiance) are more favourable forO.agardhii, since this species has a much lower requirement of light energy for growth than green algae as a consequence of its lower specific maintenance rate constant, e (VAN LIERE, 1979; GONS, 1977). Competition experiments, performed withO. agardhii andScenedesmus protuberans under lightlimiting conditions, confirmed the hypothesis (MURet al., 1978), Continuous culture experiments withA. flos-aquae showed that also this species had a higher energy requirement thanO. agardhii (ZEVENBOOM, 1980). The differences were not found in the value of e, but in the growth efficiency. The higher energy requirement ofA.flos-aquae was expected, since energy is needed for heterocyst production and N2 fixation. Under light-limiting conditions and nutrient sufficiency (including nitrogen-nitrate) it can thus be expected that the N2-fixer will be outcompeted by the non-N2-fixing cyanobacterium. This was indeed observed (ZEVENBOOM et al., 1981).We further investigated the competitive interactions betweenA.flos-aquae, O. agardhii andS. protuberans under different sets of irradiance values and nitrate concentrations. We used the growth kinetic data of the species involved, which were obtained by means of continuous culture experiments (GONS, 1977; VAN LIERE. 1979; VAN LIERE and MUR, 1979; GONS and MUR, 1980; ZEVENBOOM and MUR, 1980; ZEVENBOOMet al., 1980; ZEVENBOOMet al., 1981). The competing species could be placed along the gradients of light irradiance values and nitrate concentrations, their positions being defined by their energy requirements and half-saturation constants for nitrate-limited growth, respectively. Distinct niches for the three species were found with respect to light and nitrate. Under conditions of low irradiance values and low (realistic) nitrate concentrations, nitrogen-limitedO.agardhii was able to outgrowA. flos-aquae andS. protuberans as a consequence of its low energy requirement and its high affinity for nitrate. The growth rates of the last two species were restricted by the limited availability of light. However, at high irradiance values,O.agardhii was inhibited in its growth rate and therefore failed to outgrow the other two species. The competition was then restricted to nitrogen-limitedS.protuberans and light-limitedA.flos-aquae; the latter could dominate at low nitrate concentrations. The results of competition experiments withO.agardhii andA.flos-aquae under different sets of irradiance values and nitrate concentrations agreed well with the niche-model described above (Zevenboom, unpubl. results).In conclusion, kinetic data of growth, obtained with continuous culture experiments, can provide basic information to explain species shifts and dominance in lakes with increasing eutrophication. Nitrogen-limiting conditions favour N2-fixing cyanobacteria only when sufficient light is available for their growth (in less hypertrophic waters). The trophic state is thus of major importance and decisive with regard to which species will dominate.  相似文献   

18.
Synopsis Herbivory by wide-ranging fishes is common over tropical reefs, but rare in temperate latitudes where the effects of herbivorous fishes are thought to be minimal. Along the west coast of North America, herbivory by fishes on nearshore reefs is largely restricted to a few members of the Kyphosidae, distributed south of Pt. Conception. This paper presents information on natural diets and results from feeding choice experiments for two abundant kyphosids from intertidal habitats in San Diego, California —Girella nigricans andHermosilla azurea, and similar data for the lined shore crab,Pachygrapsus crassipes, which also forages over intertidal reefs. These results are compared with the availability of algae in intertidal habitats measured during summer and winter, on both disturbed and undisturbed habitats. The diets of juveniles ofG. nigricans andH. azurea collected from nearshore habitats were dominated by animal prey (mainly amphipods), but adults of these fishes, andP. crassipes, consumed algae nearly exclusively, with 26, 10, and 14 taxa of algae identified fromG. nigricans, H. azurea, andP. crassipes, respectively. Algae with sheet-like morphologies (e.g.Ulva sp.,Enteromorpha sp., members of the Delesseriaceae) were the principal algae in the diets of the fishes, and calcareous algae (e.g.Corallina sp.,Lithothrix aspergillum) and sheet-like algae (Enteromorpha sp.) comprised the greatest identifiable portion of the shore crab's diet. Feeding choice experiments indicated that the fishes preferred filamentous algae (e.g.Centroceras clavulatum, Polysiphonia sp.,Chondria californica) and sheet-like algae (e.g.Enteromorpha sp.,Ulva sp.,Cryptopleura crispa) over other algal morphologies, whereas the shore crab chose jointed calcareous algae (e.g.Lithothrix aspergillum, Corallina vancouveriensis, Jania sp.) most frequently. The diets and preferences for algae by the fishes were generally most similar to the assemblage of algae available in early successional (disturbed) habitats during summer when sheet-like and filamentous algae are abundant. The shore crab exhibited the opposite trend with a diet more similar to late successional (undisturbed) habitats.  相似文献   

19.
Some species of Spirogyra living in streams can anchor to the substratum by differentiating a rhizoid from a terminal cell of a filament. Rhizoid differentiation occurs in the light but not in the dark. When a filament of Spirogyra sp. competent for rhizoid differentiation was incubated in a medium containing 0.1% saponin, terminal cells were released one by one, forming single cells. Single cells effectively differentiated to be rhizoids when saponin in the incubation medium was removed. The single-cell system developed in the present study seems suitable for analysis of gene expression during rhizoid differentiation of Spirogyra.  相似文献   

20.
Larval development ofOdontobutis obscura obscura, reared withArtemia sp. andLimnodrilus sp. for about two months, was observed in a room maintained at 20±0.5°C. The development was classified into nine nominal stages, and was compared with that ofO. o. interrupta and ofO. platycephala. The size and shape of the eggs and the development of this species are similar to those ofO. o. interrupta andO. platycephala. From the juvenile stage,O. obscura is distinguishable fromO. platycephala by the appearance of dark bands on the body located in the same position as in adults.O. o. interrupta is also distinguished fromO. o. obscura in the juvenile stage by the presence of melanophores on the dorsal and ventral sides of the caudal peduncle. The anal fin fold ofO. obscura is higher than the dorsal fin fold, but the two folds are equal in height inO. platycephala. O. obscura has a well-developed air bladder and swims high in the water at the feeding stage.O. platycephala has a poorly developed air bladder and swims on the bottom. Xanthophores are observed at an earlier stage and more strongly developed inO. obscura than inO. platycephala. Growth rate is faster inO. obscura than inO. platycephala. O. obscura spawns at a smaller body size thanO. platycephala. InO. o. obscura, the arrangement of cephalic pit organs is completed at 14 mm SL. InO. o. interrupta, this arrangement is completed at the same time or a little later than inO. o. obscura. The infraorbital and verticalantorbital pit lines ofO. platycephala, which are separated in the adults, are connected until the juveniles measure about 30 mm SL. These pit lines are connected even in the adults ofO. o. obscura andinterrupta. InO. platycephala, the sensory canals are first formed behind the eyes, then dorso-anterior to the eyes, then at the posterior edge of the preopercles and finally anterior to the eyes. Postocular canals begin to form in individuals more than 20 mm SL. All individuals ofO. o. interrupta more than 70 mm SL have postocular canals.O. o. obscura has no sensory canals throughout life. The differences in growth rate, body size at spawning, and the time of completion of the cephalic lateral line system suggest paedomorphosis in the three taxa studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号