首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mono trans geometrical isomer of eicosapentaenoic acid, 5c,8c,11c,14c,17t-eicosapentaenoic acid (20:5delta5c,8c,11c,14c,17t), was synthesized by fatty acid microbial conversion using a delta12-desaturase defective mutant of an arachidonic acid (AA)-producing fungus, Mortierella alpina 1S-4. The substrate for the bioconversion, a geometrical isomer of linolenic acid, was prepared by isomerization of linseed oil methyl ester by the nitrous acid method, followed by purification on a AgNO3-silica gel column. The structure and double bond geometry were identified after hydrazine reduction followed by permanganate oxidation to 20:5delta5c,8c,11c,14c,17t. The biosynthetic route from 18:3delta6c,9c,12t to 20:5delta5c,8c,11c,14c,17t was presumed to mimic the route from linoleic acid to arachidonic acid.  相似文献   

2.
Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2 to 4.5-fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas 6-keto-prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase.  相似文献   

3.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

4.
Spray-dried milk enriched with n-3 fatty acids from linseed oil or fish oil were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2–4.5 fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas, 6-keto- prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase. (Mol Cell Biochem xxx: 9–16, 2005)  相似文献   

5.
为了研究亚麻籽油(LO)和豆油(SO)完全替代鱼油(FO)对大黄鱼(Larimichthys crocea)肝脏和肌肉脂肪酸组成及Δ6Fad (Δ6 Fatty acid desaturase)基因表达的影响。实验用豆油和亚麻籽油替代鱼油制备了3种等氮等脂的精制饲料, 在海水浮动网箱中进行了为期10周的养殖实验。实验结果表明: (1)鱼油组的增重率、饲料效率和特定生长率均显著高于亚麻籽油组和豆油组(P<0.05), 但对成活率, 肝体指数和脏体指数没有显著影响(P>0.05); (2)亚麻籽油和豆油完全替代鱼油显著改变了鱼体肝脏和肌肉的脂肪酸组成, 降低了肝脏和肌肉LC-PUFA (Long chain-polyunsaturated fatty acid)的相对含量(P<0.05), 在亚麻籽油组(LO)和豆油组(SO)中没有显著差异(P>0.05), 在各处理组中, 肌肉的n-3LC-PUFA的相对含量显著高于肝脏(P<0.05); (3)亚麻籽油和豆油显著上调了肌肉和肝脏中Δ6Fad基因的表达量(P<0.05), 其表达量在肝脏中分别升高了7.6和6.5倍, 在肌肉中分别上升了2.2和2.8倍。结果表明, 在实验条件下亚麻籽油和豆油完全替代鱼油对大黄鱼生长具有不利影响, 亚麻籽油和豆油替代鱼油降低了肝脏和肌肉中LC-PUFA的含量, 提高了Δ6Fad基因的表达量。  相似文献   

6.
Dietary omega-3 polyunsaturated fatty acids have a proven role in reducing the risk of cardiovascular disease and precursor disease states such as metabolic syndrome. Although most studies have focussed on the predominant omega-3 fatty acids found in fish oils (eicosapentaenoic acid and docosahexaenoic acid), recent evidence suggests similar health benefits from their common precursor, stearidonic acid. Stearidonic acid is a Δ6-unsaturated C18 omega-3 fatty acid present in a few plant species (mainly the Boraginaceae and Primulaceae ) reflecting the general absence of Δ6-desaturation from higher plants. Using a Δ6-desaturase from Primula vialii , we generated transgenic Arabidopsis and linseed lines accumulating stearidonic acid in their seed lipids. Significantly, the P. vialii Δ6-desaturase specifically only utilises α-linolenic acid as a substrate, resulting in the accumulation of stearidonic acid but not omega-6 γ-linolenic acid. Detailed lipid analysis revealed the accumulation of stearidonic acid in neutral lipids such as triacylglycerol but an absence from the acyl-CoA pool. In the case of linseed, the achieved levels of stearidonic acid (13.4% of triacylglycerols) are very similar to those found in the sole natural commercial plant source ( Echium spp.) or transgenic soybean oil. However, both those latter oils contain γ-linolenic acid, which is not normally present in fish oils and considered undesirable for heart-healthy applications. By contrast, the stearidonic acid-enriched linseed oil is essentially devoid of this fatty acid. Moreover, the overall omega-3/omega-6 ratio for this modified linseed oil is also significantly higher. Thus, this nutritionally enhanced linseed oil may have superior health-beneficial properties.  相似文献   

7.
This study aimed to investigate the effects and possible interactions of birth weight and n-3 polyunsaturated fatty acid (PUFA) supplementation of the maternal diet on the fatty acid status of different tissues of newborn piglets. These effects are of interest as both parameters have been associated with pre-weaning mortality. Sows were fed a palm oil diet or a diet containing 1% linseed, echium or fish oil from day 73 of gestation. As fish oil becomes a scarce resource, linseed and echium oil were supplemented as sustainable alternatives, adding precursor fatty acids for DHA to the diet. At birth, the lightest and heaviest male piglet per litter were killed and samples from liver, brain and muscle were taken for fatty acid analysis. Piglets that died pre-weaning had lower birth weights than piglets surviving lactation (1.27±0.04 v. 1.55±0.02 kg; P<0.001), but no effect of diet on mortality was found. Lower DHA concentrations were observed in the brain of the lighter piglets compared with their heavier littermates (9.46±0.05 v. 9.63±0.04 g DHA/100 g fatty acids; P=0.008), suggesting that the higher incidence of pre-weaning mortality in low birth weight piglets may be related to their lower brain DHA status. Adding n-3 PUFA to the sow diet could not significantly reduce this difference in DHA status, although numerically the difference in the brain DHA concentration between the piglet weight groups was smaller when fish oil was included in the sow diet. Independent of birth weight, echium or linseed oil in the sow diet increased the DHA concentration of the piglet tissues to the same extent, but the concentrations were not as high as when fish oil was fed.  相似文献   

8.
Spontaneously hypertensive (SHR) and normotensive rats were fed a diet supplemented with linseed oil or cod liver oil for 22 weeks. The most remarkable finding was an extreme fall of linoleic acid in lipids from renal medulla after cod liver oil supplementation. In free fatty acids (FFA) eicosatrienoic acid (C2): 3n-9) appeared increased as a sign of essential fatty acid (EFA) deficiency.  相似文献   

9.
A trans unsaturated fatty acid was found as a major constituent in the lipids of Pseudomonas putida P8. The fatty acid was identified as 9-trans-hexadecenoic acid by gas chromatography, argentation thin-layer chromatography, and infrared absorption spectrometry. Growing cells of P. putida P8 reacted to the presence of sublethal concentrations of phenol in the medium with changes in the fatty acid composition of the lipids, thereby increasing the degree of saturation. At phenol concentrations which completely inhibited the growth of P. putida, the cells were still able to increase the content of the trans unsaturated fatty acid and simultaneously to decrease the proportion of the corresponding 9-cis-hexadecenoic acid. This conversion of fatty acids was also induced by 4-chlorophenol in nongrowing cells in which the de novo synthesis of lipids had stopped, as shown by incorporation experiments with labeled acetate. The isomerization of the double bond in the presence of chloramphenicol indicates a constitutively operating enzyme system. The cis-to-trans modification of the fatty acids studied here apparently is a new way of adapting the membrane fluidity to the presence of phenols, thereby compensating for the elevation of membrane permeability induced by these toxic substances.  相似文献   

10.
A trans unsaturated fatty acid was found as a major constituent in the lipids of Pseudomonas putida P8. The fatty acid was identified as 9-trans-hexadecenoic acid by gas chromatography, argentation thin-layer chromatography, and infrared absorption spectrometry. Growing cells of P. putida P8 reacted to the presence of sublethal concentrations of phenol in the medium with changes in the fatty acid composition of the lipids, thereby increasing the degree of saturation. At phenol concentrations which completely inhibited the growth of P. putida, the cells were still able to increase the content of the trans unsaturated fatty acid and simultaneously to decrease the proportion of the corresponding 9-cis-hexadecenoic acid. This conversion of fatty acids was also induced by 4-chlorophenol in nongrowing cells in which the de novo synthesis of lipids had stopped, as shown by incorporation experiments with labeled acetate. The isomerization of the double bond in the presence of chloramphenicol indicates a constitutively operating enzyme system. The cis-to-trans modification of the fatty acids studied here apparently is a new way of adapting the membrane fluidity to the presence of phenols, thereby compensating for the elevation of membrane permeability induced by these toxic substances.  相似文献   

11.
The present study deals with the production of structured lipid containing omega-3 and omega-6 fatty acids in the ratio of 1:1 by incorporating omega-3 fatty acids (α-linolenic acid) from linseed oil into groundnut oil using lipase (Lipozyme IM from Rhizomucor miehei) catalyzed acidolysis reaction in hexane. The reaction conditions were optimized by response surface methodology with a four-variable five-level central composite rotatable experimental design. The influence of four independent parameters, namely ratio of fatty acid concentrate from linseed to groundnut oil (0.66–1.98, w/w), reaction temperature (30–60 °C), enzyme concentration (1–5%) and reaction time (2–54 h) on omega-3 fatty acids incorporation into groundnut oil were optimized. Optimal conditions for the structured lipid containing omega-3 to omega-6 fatty acids in the ratio of 1:1 were determined to be; enzyme concentration 3.75% (w/w), temperature 37.5 °C, incubation time 30.81 h and ratio of free fatty acid concentrate from linseed oil to groundnut oil 1.16 (w/w).  相似文献   

12.
Long chain polyunsaturated fatty acids presenting an unusual structure were found in testis and adrenal lipids of rats fed thermopolymerized linseed oil: they might be metabolites including at least one trans double bond.  相似文献   

13.
The influence of dietary fatty acids on hepatic capacity of lipid synthesis and secretion was investigated in 7-week-old male turkeys. They were fed 10% of either lard (rich in saturated and monounsaturated fatty acids) or linseed oil (rich in polyunsaturated fatty acids, especially 18:3n-3). Fattening was identical with both diets (0.15-0.20% of abdominal adipose tissue), but the proportion of muscle Pectoralis major was lower with linseed oil (6.6 vs. 7.4%). Specific activities of lipogenic enzymes (ME, G6PDH, ACX, and Delta9-desaturase) were not influenced by the diet, however, FAS activity was lower with linseed oil (14.3 vs. 25.4 nM NADPH fixed/min). Fasting concentrations of lipoproteins synthesized and secreted by the liver, VLDL and HDL, were also lower with linseed oil, as well as plasma concentrations of phospholipids and cholesteryl esters. However, when VLDL catabolism was inhibited by injection of an antiserum against LPL, VLDL concentration was identical in both groups (100-120 mg/l), whereas that of phospholipids and cholesteryl esters, that are transported by HDL mainly, remained lower with linseed oil. Thus, in the growing turkeys, and contrary to mammals and the chicken, feeding n-3 polyunsaturated fatty acids did not decrease hepatic triglyceride synthesis and secretion, nor fattening. By contrast, in this species, n-3 polyunsaturated fatty acids appear to influence mostly HDL metabolism, with a negative impact on muscular growth.  相似文献   

14.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

15.
Female Wistar rats were fed with diets containing as dietary lipids 10% of hydrogenated coconut oil, grape-seed oil, olive oil, linseed oil and fish oil, respectively, for a period of 60 days. At the end of dietary treatment plasma, platelets and aorta phospholipids were extracted and fatty acid spectra determined. Plasma and platelet phospholipids showed the largest diet dependent changes. Anyway in aorta samples too, phospholipids showed marked increase in oleic (olive oil group) linoleic (grape-seed oil group) and alpha linoleic (linseed oil group) acids percentage. Conversely decreased amounts of arachidonic acid were detected in rats fed with diets containing linseed and fish oils. In these samples eicosapentenoic acid partly replaced arachidonic one.  相似文献   

16.
Recent studies have demonstrated that dietary fish oils rich in eicosapentaenoic acid (C20:5,omega 3) lower the content of arachidonic acid and its metabolites in plasma and tissue phospholipids. The present study examined the fatty acid composition of cholesterol ester and triacylglycerol fractions from plasma and livers of rats fed diets enriched with saturated fatty acids (beef tallow), alpha-linolenic acid (linseed oil) or eicosapentaenoic acid (fish oil). Feeding diets containing linseed oil or fish oil for 28 days increased arachidonic acid (C20:4,omega 6) levels in the cholesterol ester fraction of liver and in the triacylglycerol fraction of the plasma lipids. Plasma cholesterol esters were depleted of C20:4,omega 6 after feeding of the diet containing either linseed oil or fish oil. The changes in C20:4,omega 6 content cannot be explained by alterations in cholesterol ester or triacylglycerol pools of plasma and liver. These results suggest that the decrease in phospholipid C20:4,omega 6 content generally observed after fish oil consumption may be partly due to a shift of C20:4,omega 6 from phospholipid to the triacylglycerol and/or cholesterol ester pools in the same tissue. Triacylglycerols and cholesterol esters may therefore play a buffering role in the homeostatic maintenance of tissue phospholipid levels of arachidonic acid.  相似文献   

17.
The present study was conducted to investigate the effect of zinc deficiency on fatty acid desaturation in rats fed two different types of dietary fat, a mixture of coconut oil and safflower oil (7∶1, w/w, “coconut oil diet”) or linseed oil (“linseed oil diet”). In order to ensure an adequate food intake, all rats were force-fed by gastric tube. Zinc deficiency caused statistical significant reducion of Δ9-desaturase activity in liver microsomes of rats fed coconut oil diet and tendencial reduction (p<0.15) in rats fed linseed oil diet compared with control rats fed diets with the same type of fat. In agreement with this effect, zinc deficiency in the rats fed both types of dietary fat increased the ratio between total saturated and total monounsaturated fatty in liver phospholipids and liver microsomes. Zinc deficient rats on the coconut oil diet had unchanged Δ6-desaturase activity with linoleic acid as substrate and lowered activity with α-linolenic acid as substrate. In contrast, zinc deficient rats on the linseed oil diet had increased Δ6-desaturase activity with linoleic acid as substrate and unchanged activity with α-linolenic acid. Because linoleic acid is the main substrate for Δ6-desaturase in the rats fed coconut oil diet, and α-linolenic acid is the main substrate in the rats fed linseed oil diet, it is concluded that in vivo Δ6-desaturation was not changed by zinc deficiency in the rats fed both types of dietary fat. Activity of Δ5-desaturase was also not changed by zinc deficiency in the rats fed both dietary fats. Levels of fatty acids in liver phospholipids and microsomes derived by Δ4-, Δ5-, and Δ6-desaturation were not consistently changed by zinc deficiency in the rats fed both types of dietary fat. Thus, the enzyme studies and also fatty acid composition data of liver phospholipids and microsomes indicate that zinc deficiency does not considerably disturb desaturation of linoleic and α-linolenic acid. Therefore, it is suggested that similarities between deficiencies of zinc and essential fatty acids described in literature are not due to disturbed desaturation of linoleic acid in zinc deficiency. The present study also indicates that zinc deficiency enhances incorporation of eicosapentaenoic acid into phosphatidylcholine of rats fed diets with large amounts ofn-3 polyunsaturated fatty acids.  相似文献   

18.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The seed oil content of Microula sikkimensis (Clarke) Hemsl. is up to 45% There is 8.1% of γ-linolenic acid which has the pharmacological action in the fatty acids composition, It has showed that this oil has a stronger effect on reducing triglyceride in serum. Fifteen different kinds of fatty acids were analysed. The unsaturated C20, C22, C24 acid, C18 triene-acid and tetraene-acid of the seed oil were separated on AgNO3-silica gel column and HPLC. and were identified by Periodata-Permanganate Oxidation, GLC, IR, UV, and MS. They are cis-11-eicosenoic, cis-13-docosenoic, cis-15-tetracosenoic, cis-6,9,12-octadecatrienoic and cis-6,9,12,15- octadecatetraenoic acids.  相似文献   

20.
n-3 polyunsaturated fatty acids (n-3 PUFA) contribute to the normal growth and development of numerous organs in the piglet. The fatty acid composition of piglet tissues is linked to the fatty acid composition of sow milk and, consequently, to the composition of sow diet during the gestation and lactation period. In this study, we investigated the impact of different contents of extruded linseed in the sow diet on the fatty acid composition and desaturase gene expression of piglets. Sows received a diet containing either sunflower oil (low 18:3n-3 with 18:3n-3 representing 3% of total fatty acids) or a mixture of extruded linseed and sunflower oil (medium 18:3n-3 with 9% of 18:3n-3) or extruded linseed (high 18:3n-3 with 27% of 18:3n-3) during gestation and lactation. Fatty acid composition was evaluated on sow milk and on different piglet tissues at days 0, 7, 14, 21 and 28. The postnatal evolution of delta5 (D5D) and delta6 (D6D) desaturase mRNA expression was also measured in the liver of low 18:3n-3 and high 18:3n-3 piglets. The milk of high 18:3n-3 sows had higher proportions of n-3PUFA than that of low 18:3n-3 and medium 18:3n-3 sows. Piglets suckling the high 18:3n-3 sows had greater proportions of 18:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3 in the liver, and of 22:5n-3 and 22:6n-3 in the brain than low 18:3n-3 and medium 18:3n-3 piglets. D5D and D6D mRNA expressions in piglet liver were not affected by the maternal diet at any age. In conclusion, extruded linseed in the sow diet modifies the n-3PUFA status of piglets during the postnatal period. However, a minimal content of 18:3n-3 in the sow diet is necessary to increase the n-3PUFA level in piglet liver and brain. Moreover, modifications in the n-3PUFA fatty acid composition of piglet tissue seem linked to the availability of 18:3n-3 in maternal milk and not to desaturase enzyme expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号