首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF.  相似文献   

2.
Abstract: Effects of thyroxine (T4) on nerve growth factor (NGF) level and choline acetyltransferase (ChAT) activity of rat brains were investigated. Repetitive intraperitoneal administration of T4 caused increases in both NGF level and ChAT activity in the frontal cortex, septum, hippocampus, and striatum and decreases in the cerebellum in 2-day-old rats. Only ChAT activity was elevated in the olfactory bulb, and the NGF level remained unchanged there. No changes were observed in the midbrain and pons/medulla. Furthermore, T4 was effective on the post-natal rats only up to day 11. These results suggest that T4 plays a role in the developmental regulation of NGF level and ChAT activity in rat brain in a region- and/or stage-specific manner. That (1) changes in NGF level and ChAT activity occurred in regions nearly identical to those that contained NGF-responding neurons, and (2) the change in NGF level in the hippocampus and frontal cortex was followed by the change of ChAT activity after a single injection of T4 suggest that the effects of T4 on cholinergic differentiation are, at least in part, mediated via NGF, which itself is quantitatively regulated by T4.  相似文献   

3.
4.
Sex differences were investigated in cholinergic neurons of the septal-diagonal band region of adult rats subjected to neonatal treatment with 3,3',5-triiodo-L-thyronine (T3). Neonatal hyperthyroidism resulted in a 44% increase in specific activity of choline acetyltransferase (ChAT; EC 2.3.1.6) in adult male rat septal-diagonal band region, whereas no change in ChAT activity could be detected in either dorsal or ventral hippocampus. An increase in muscarinic cholinergic receptors, as measured by [3H]quinuclidinyl benzilate [( 3H]QNB) binding, was discovered in both septum-diagonal band and dorsal hippocampus of the T3-treated male rats. Immunohistochemistry in the septal-diagonal band region indicated a more intense staining in the neonatally T3-treated adult male rats than in controls, with larger and more abundant ChAT-positive and nerve growth factor receptor (NGF-R)-positive varicosities. ChAT immunocytochemistry showed a substantial decrease in cell body area in the medial septum and in the vertical limb of the diagonal band of T3-treated male rats, while cell density increased twofold. Female littermates subjected to the same treatment showed no changes in any of the biochemical or immunohistochemical cholinergic markers. Only in the medial septum was morphology significantly altered in the female T3-treated rats in that ChAT-positive cell body area increased. These results indicate a marked sexual variation in the septal-diagonal band region with respect to the sensitivity of postnatally developing cholinergic neurons to the actions of excess thyroid hormone.  相似文献   

5.
In comparison with normal controls, hydrocortisone-intoxicated rats (HC rats) had smaller cerebra, lowered 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) activity, and greatly reduced learning ability. The reduction in cerebral weight and DNA content was considered to be caused by a decrease in the number of proliferating glial cells, because the usual postnatal elevation of thymidine kinase (TK) activity was found to be suppressed in the cerebra from the HC rats. Electron microscopic observation of the pituitary gland revealed that the 5-day-old HC rat contained growth hormone (GH) secretory cells which were fully packed with GH granules, suggesting a disorder in the system which releases GH. In an attempt to promote cerebral development in the HC rats, we administered bovine GH (bGH) to some of the HC rats daily from the day of birth until weaning (HC + bGH rats). In the HC + bGH rats, the cerebral DNA was restored to normal levels and a concomitant increase in TK and CNPase activity was noted. Furthermore, in the brightness discrimination test, whereas the HC + bGH rats attained the learning ability of the normal controls after only 10 sessions, the HC rats were unable to reach an equivalent level even after 25 sessions.  相似文献   

6.
Effect of Triethyl Tin on Myelination in the Developing Rat   总被引:1,自引:2,他引:1  
Myelinogenesis in developing rats was studied following chronic dosing with triethyl tin (TET), at a level of 1.0 mg TET/kg body wt/day. Experiments included starved controls with body weights depressed by 17 to 40% to equal those of the TET-treated groups. Rats at ages of 16, 21, and 30 days showed decreases relative to well-nourished controls in body weight, forebrain weight, myelin yield, cerebroside level, and specific activity of brain 2',3'-cyclic nucleotide-3'-phosphohydrolase when dosed with TET. At 30 days, myelin and cerebroside yields were reduced by approximately 55%, while CNP activity was reduced by less than 20%. No differences in the forebrain myelin protein composition between control, starved, and TET animals were noted. The rate of myelin protein synthesis relative to brain total protein (assayed by incorporation of intracranially injected [3H]glycine into brain homogenate and myelin proteins) was decreased in the TET rats in proportion to the decreased yield of myelin, but no particular myelin protein was preferentially affected. Matching starved controls exhibited similar body weight decreases, less pronounced forebrain weight decreases, and little or no decrease in myelin concentration. There was a relative increase in the myelin protein synthesis rate in the starved rats, indicating preferential utilization of limited protein precursors for myelin protein synthesis. Spinal cord myelin was also decreased in the TET rats, but less severely than in the forebrain. At all ages optic, but not sciatic, nerves showed decreases in myelin concentration with TET treatment. We conclude that TET inhibits forebrain growth and CNS myelination more severely than can be accounted for by a general metabolic insult.  相似文献   

7.
Abstract: Separate analyses were made of gray matter and white matter from rat brain after neonatal undernutrition. Newborn rats were redistributed into control, large-litter, and protein-deficient groups. Large litters had 16 rather than 8 pups with a dam. Protein-deficient dams were fed a 4%, instead of a 24%, casein diet. For controls at 21 days of age, the 2',3'-cyclic nucleotide-3'-phosphohydrolase activity was more than fivefold greater in white matter than in gray matter. Severe undernutrition (protein-deficient) gave 2',3'-cyclic nucleotide-3'-phosphohydrolase activities that were 36% lower in gray matter and 56% lower in white matter. Lipid galactose concentrations were 17% less than control in both gray matter and white matter. In protein-deficient white matter, phospholipid concentrations were 15% lower than control. Ethanolamine plasmalogens and phosphatidyl serine were affected most. Moderate undernutrition (large litter) had no effect on 2',3'-cyclic nucleotide-3'-phosphohydrolase activity. A 14% deficit of galactolipids was the only difference from controls in large-litter white matter. In large-litter gray matter, phospholipid concentrations were 16% higher than controls. Nearly all glycerophos-pholipids, including plasmalogens, were affected. With the exception of the myelination markers, 2',3'-cyclic nucleotide-3'-phosphohydrolase and lipid galactose, the development of lipids in gray matter is almost completely spared from the effects of undernutrition. The primary effect of undernutrition is on myelination, especially in white matter.  相似文献   

8.
The role of nerve growth factor (NGF) and its receptor (NGFR) in the regulation of cholinergic activity has been studied during the aging process. NGFRs were quantified in cortical membranes using a radioactive binding assay. NGF levels and choline acetyltransferase (ChAT) activity were determined in cortex, hippocampus, neostriatum, and septum. These assays were performed in both adult (6-month-old) and aged (36-month-old) rats. High- and low-affinity 125I-NGF binding sites were present in cortex of adult and aged rats. Furthermore, we observed a decrease in number and affinity of both NGFRs in aged rats. ChAT activity in these rats was lower (approximately 30%) than in adult rats in all the brain regions examined. NGF levels were not modified in cortex and hippocampus and were decreased in neostriatum (55%) and septum (35%). In conclusion, our results suggest that, during the aging process, the cholinergic impairment is related to a decrease in NGF levels in neostriatum but not in cortex and hippocampus. The reduction in level of NGF protein in septum could be due to a decrease in number of high-affinity 125I-NGF binding sites.  相似文献   

9.
Polyclonal antibodies against recombinant human nerve growth factor (rhNGF) potently inhibited PC12 neurite outgrowth, blocked high-affinity 125I-rhNGF binding but not its receptor, and cross-reacted with rat, mouse, and human nerve growth factor (NGF) but not with brain-derived neurotrophic factor, neurotrophin-3, ciliary neurotrophic factor, insulin-like growth factor, epidermal growth factor, or activin A. Immunocytochemistry revealed many NGF-positive neurons in the rat neostriatum. The NGF-positive neurons disappeared by 3 days after mechanical injury to the neostriatum and were replaced by intensely NGF- and glial fibrillary acidic protein-positive astrocytes. Enzyme-linked immunosorbent assay measurements revealed that the NGF content of the injured striatum was elevated by eightfold 3 days postinjury and by twofold 2 weeks later. The high-affinity choline uptake (HACU) into cholinergic nerve terminals was decreased by 23% at 2 and 4 weeks postinjury, yet choline acetyltransferase (ChAT) activity in these neurons was unchanged at 2 weeks and decreased by 14% at 4 weeks. Daily infusion of 1 microgram of rhNGF into the injury area did not alter the loss of HACU. However, this treatment elevated ChAT activity by 23-29% above intact neostriatal levels and by 53-65% relative to HACU at both survival times. Thus, lesion-induced increases in NGF levels within astrocytes are associated with maintenance of striatal ChAT activity at normal levels following cholinergic injury, even with decreases in HACU. Pharmacologic doses of rhNGF can further augment ChAT activity in damaged cholinergic neurons, showing the usefulness of exogenous NGF even when endogenous NGF is elevated in response to injury.  相似文献   

10.
Abstract: Cerebral cortex from reeler mutant mice was examined morphologically and biochemically. The sequential process of postnatal cell migration in the cerebral cortex of reeler (rl/rl) was examined morphologically. The dense cellular cortical plate lies below the molecular layer near the cerebral surface just after birth in normal mice while in reeler most of the cells are concentrated in the center of the cortex. In the cortex of adult reeler, the broad laminar structure of the neurons could be seen to form inverted positions in the cortical layers. The total wet weight, and the concentration of DNA and RNA in the pallium cerebri from reeler did not differ significantly from those in the control. As to the protein profiles of the pallium cerebri detected by SDS- polyacrylamide gel electrophoresis, no significant differences were observed. Activities of CNPase (2',3'-cyclic nucleotide 3'-phosphohydrolase), which is a myelin enzyme of CNS, and choline acetyltransferase were at the same level in both the reeler and the control. Therefore, reeler mutation does not appear to affect the genetically determined cell numbers, number of cholinergic fibers, and myelination. By autoradiographic observation of the cerebral cortex after intraperitoneal injection of [14C]2-deoxyglucose, it was revealed that 2-deoxyglucose was incorporated intensively into the fourth layer (granular layer) of the cerebrum from the control. In reeler it was also incorporated into the granular layer but in a more widespread distribution. We conclude that terminals to the granular layer make metabolically active synapse, perhaps even in a manner inverted from normal.  相似文献   

11.
Abstract: Snell dwarf mice (dw) showed a lower CNPase activity (59% of the normal controls) only in the cerebrum among different parts of the CNS, and a strikingly reduced level of spontaneous locomotion activity with an indistinct diurnal periodicity in a 24-h record at 40 days of age. Daily administration of bGH and T4 to the dwarfs during the first 40 days of postnatal life restored CNPase activity to the level of the normal controls, and was accompanied by normalization of the pattern of spontaneous locomotion activity. Daily administration of bGH alone also restored CNPase activity and spontaneous locomotion, but to a lesser extent. The daily administration of thyroid stimulating hormone (TSH) alone, however, failed to restore CNPase activity, in spite of the fact that the thyroid glands of the TSH-treated dwarfs were indistinguishable from the normal controls in organization and appearance. These results indicate that the restoration of both the retarded myelinogenesis and abnormal behavior of the Snell dwarf mice might essentially depend upon GH levels and the synergistic effects of T4.  相似文献   

12.
Abstract: In this study, we examined the effects of nerve growth factor (NGF) administration on cholinergic enzyme activity in both normal and ethylcholine mustard aziridinium (AF64A)-treated rats. Choline acetyltransferase (ChAT) and acetylcholinesterase activity were measured in the hippocampus and septum of rats chronically administered NGF (0.36–2.85 µg/day) into the lateral ventricle for 14 days. In both normal and AF64A-treated rats, NGF increased cholinergic enzyme activity in a dose-dependent manner. Furthermore, although NGF increased ChAT activity in normal rats by 147%, it had a greater effect in AF64A-treated rats, increasing ChAT activity as much as 273%. NGF increased acetylcholinesterase activity in normal rats by only 125% but produced a 221% increase in this activity in AF64A-treated rats. These data indicate that AF64A produces an increased sensitivity to NGF in cholinergic neurons.  相似文献   

13.
Snell dwarf mice (dw/dw) and normal mice (+/?) were injected with thyroxine (T4) (1 μg/animal, four injections) and growth hormone (GH) (20 μg/animal, four injections) from the 5th to the 15th day of life. In the untreated dw/dw mouse brain, the specific activities of UDP-galactose:ceramide galactosyltransferase (CGalT), PAPS:cerebroside sulfotransferase (CST), and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) were decreased by 28, 25, and 37%, respectively, compared with the control untreated +/? mice. The major effect of T4 was an increase of the brain CNP in the +/? mice (+40%) and dw/dw mice (+111%). The treatment with T4 also brought to normal the level of CGalT in dw/dw brain; a somewhat less marked effect on CST was observed. The treatment with GH had a great stimulatory effect on CNP: the specific activity of this enzyme increased by 40 and 69% in +/? and dw/dw mouse brain, respectively. On the contrary, no effect of GH on the CGalT activity was observe in this study. Our results suggest that T4 and GH may have both independent and complementary actions on the myelin-associated enzymes during the early postnatal period of brain development.  相似文献   

14.
Primary cultures of cells dissociated from fetal rat brain were utilized to define the developmental changes in cholesterol biosynthesis and the role of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the regulation of these changes. Cerebral hemispheres of fetal rats of 15-16 days of gestation were dissociated mechanically into single cells and grown in the surface-adhering system. Cholesterol biosynthesis, studied as the rate of incorporation of [14C]acetate into digitonin-precipitable sterols, was shown to exhibit two distinct increases in synthetic rates, a prominent increase after 6 days in culture and a smaller one after 14 days in culture. Parallel measurements of HMG-CoA reductase activity also demonstrated two discrete increases in enzymatic activity, and the quantitative and temporal aspects of these increases were virtually identical to those for cholesterol synthesis. These data indicate that cholesterol biosynthesis undergoes prominent alterations with maturation and suggest that these alterations are mediated by changes in HMG-CoA reductase activity. The timing of the initial prominent peak in both cholesterol biosynthesis and HMG-CoA reductase activity at 6 days was found to be the same as the timing of the peak in DNA synthesis, determined as the rate of incorporation of [3H]thymidine into DNA. The second, smaller peak in reductase activity and sterol biosynthesis at 14 days occurred at the time of the most rapid rise in activity of the oligodendroglial enzyme, 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP). These latter observations suggest an intimate relationship of the sterol biosynthetic pathway with cellular proliferation and with oligodendroglial differentiation in developing mammalian brain.  相似文献   

15.
Wallerian degeneration of the rabbit optic nerve was investigated by the technique of retinal ablation which precludes edema, hemorrhage, or macrophage infiltration. After 8 days of degeneration, marked degradation of axons and some myelin abnormalities appeared in the optic nerve, optic chiasma, and optic tract. Myelin lesions were maximal 32 days after retinal destruction. The amount of material stained with a myelin dye decreased drastically between 32 and 90 days after the operation. Biochemical parameters gave the following sequence of events. The concentration of the major periodic acid--Schiff staining glycoproteins was decreased after 2 days, and 6 days later the presence of cholesterol esters was detected in the optic tissue. After 16 days of Wallerian degeneration, the specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase not associated with myelin decreased, indicating a possible de-differentiation of oligodendrocytes. Degradation of myelin basic protein became significant at 32 days and the amount of myelin isolated decreased later. The loss of myelin basic protein coincided with a reduction of myelin periodicity as measured in purified fractions by electron microscopy. These results show that secondary myelin destruction in the absence of edema, hemorrhage, or macrophages is a very slow process, and in this situation myelin undergoes a selective and sequential loss of its constituents.  相似文献   

16.
The effects of nerve growth factor (NGF) and epidermal growth factor (EGF) on the intracellular accumulation of inositol phosphates and on cytosolic free Ca2+ concentrations were studied in rat PC12 pheochromocytoma cells. Both NGF and EGF potentiate in these cells the increase in the accumulation of inositol phosphates that is elicited by bradykinin and carbachol. A corresponding potentiation was also found for the agonist-induced increase of cytosolic Ca2+ concentrations. The effect of NGF, but not that of EGF, is abolished when the cells are preincubated with 5'-deoxy-5'-methylthioadenosine, an inhibitor of S-adenosylhomocysteine hydrolase. These results suggest that an increased response to hormones, which act via phosphoinositide-derived second messengers, may be important in the mechanism of action of NGF and EGF.  相似文献   

17.
18.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

19.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号