首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 62 毫秒
1.
This review covers 214 marine natural compounds and 23 of their synthetic analogs, which were discovered and/or synthesized from mid-2009 to August 2014. The antifouling (AF) compounds reported have medium to high bioactivity (with a threshold of EC50 < 15.0 mg ml?1). Among these compounds, 82 natural compounds were identified as new structures. All the compounds are marine-derived, demonstrating that marine organisms are prolific and promising sources of natural products that may be developed as environmentally friendly antifoulants. However, this mini-review excludes more than 200 compounds that were also reported as AF compounds but with rather weak bioactivity during the same period. Also excluded are terrestrial-derived AF compounds reported during the last five years. A brief discussion on current challenges in AF compound research is also provided to reflect the authors’ own views in terms of future research directions.  相似文献   

2.
Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.  相似文献   

3.
Many studies have shown that natural marine compounds can prevent biofouling by a broad spectrum of organisms without toxic effects, encouraging their use in antifouling (AF) coatings. Studies over the past 25 years of the natural product zosteric acid (ZA) are systematically organized in this review. ZA is a sulfated phenolic acid produced by the seagrass Zostera marina that has very promising AF potential against several micro- and macrofouling organisms. ZA was shown to have appropriate environmental fate parameters such as high water solubility, a low log P, low bioaccumulation, and no ecotoxicity, which demonstrated the potential of ZA as a safe AF agent. This review also highlights that ZA has been successfully incorporated into several types of coatings. The synthesis of analogs is also considered in this review, and it has allowed a better understanding of ZA structure–AF activity relationships and clarified the mechanism of action of ZA.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号