首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.  相似文献   

2.
The Argentine ant, Linepithema humile (Mayr), is an invasive species that has been associated with various negative impacts in native communities around the world. These impacts, as for other invasive ants, are principally towards native ant species, and impacts on below-ground processes such as decomposition remain largely unexplored. We investigated the relationship between Argentine ants and invertebrate fauna, litter decomposition and soil microbial activity between paired invaded and uninvaded sites at two locations in Auckland, New Zealand, where there has been no research to date on their impacts. We examined the diversity and composition of invertebrate and microorganisms communities, and differences in soil and litter components. The composition of invertebrates (Order-level, ant and beetle species) was different between invaded and uninvaded sites, with fewer ants, isopods, amphipods, and fungus-feeding beetles at the invaded sites, whereas Collembola were more abundant at the invaded sites. There were significant differences in soil chemistry, including higher carbon and nitrogen microbial biomass at uninvaded sites. Several litter components were significantly different for Macropiper excelsum. The fibre content of litter was higher, and key nutrients (e.g. nitrogen) were lower, at invaded sites, indicating less breakdown of litter at invaded sites. A greater knowledge of the history of invasion at a site would clarify variation in the impacts of Argentine ants, but their persistence in the ground litter layer may have long-term implications for soil and plant health in native ecosystems.  相似文献   

3.
Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to understand the impact of exotic Oreochromis niloticus in the upper Kabompo River, northwest of Zambia using taxonomic and functional diversity indices. To achieve this, two tests were performed (Test 1, compared natives in invaded and uninvaded sections; Test 2, compared natives in invaded section). A total of 17 species were collected for functional diversity computation, out of which fourteen (14) functional trait measurements linked to feeding, locomotion, and life history strategy were taken. Findings revealed that taxonomic and functional diversity values changed with invasion in both tests. Taxonomic diversity was 15% more in invaded than uninvaded sections in Test 1 and was not consistent across sampling points of invaded section in Test 2. Invaded areas were taxonomically less diverse, but functionally diverse in both tests. The analysis of similarity and nonmetric multidimensional scaling revealed no difference in Bray–Curtis similarity assemblages in both tests. Our findings revealed that exotic species more often occupy unfilled gaps in the communities often occupied by the native species; this is achieved by occupying functional spaces. Overall, changes in taxonomic and functional diversity of native species documented here partially confirmed impacts of O. niloticus invasion. Therefore, we recommend a multifaceted approach to assess cumulative impacts of invasion on native species.  相似文献   

4.
In recent years, salt marsh restoration projects have focused upon restoring hydrology through culvert enlargement to return functional values lost due to reduced tidal flow. To evaluate culvert effects on upstream nekton assemblages, fyke nets were set upstream of tidally restricted creeks, creeks recently restored with larger culverts, and paired reference creeks in New Hampshire and Maine, U.S.A. Subtidal habitats created or enlarged by scour were found immediately upstream of undersized culverts. All marshes supported similar assemblages and densities of fish, suggesting that marshes upstream of moderately restrictive culverts provide suitable habitat to support fish communities. However, densities of Crangon septemspinosa (sand shrimp) were significantly reduced upstream of culverts. A mark–recapture study was conducted in tidally restricted, restored, and reference marsh creeks to evaluate culvert effects on the movement of Fundulus heteroclitus (mummichog), the numerically dominant fish species in New England salt marshes. Recapture data indicated that small culvert size and consequently increased water velocity significantly decreased fish passage rates. We infer that upstream subtidal habitats and greater water velocities due to undersized culverts decreased nekton movements between upstream and downstream areas, resulting in segregated nekton populations. Restoration of salt marsh hydrology by the installation of adequately sized culverts will support increased fish access to marsh habitats and nekton‐mediated export of marsh‐derived production to coastal waters.  相似文献   

5.
Salt marsh management often embraces diverse goals, ranging from the restoration of degraded marshes through re-introduction of tidal flow to the control of salt marsh mosquito production by altering marsh surface topography through Open Water Marsh Management (OMWM). However, rarely have these goals been incorporated in one project. Here we present the concept of Integrated Marsh Management (IMM), which combines the best management practices of salt marsh restoration and OMWM. Although IMM offers a comprehensive approach to ecological restoration and mosquito control, research evaluating this concept??s practical implementations has been inadequate. A long-term IMM project at Wertheim National Wildlife Refuge located in a highly urbanized watershed on Long Island, New York, USA was designed to fill this knowledge gap. A combination of restoration and OMWM techniques was employed at two treatment marshes, the results monitored before and after alterations, and compared to two adjacent control marshes. The treatment marshes experienced decreased mosquito production, reduced cover of the invasive common reed (Phragmites australis), expansion of native marsh vegetation, increased killifish and estuarine nekton species abundance, as well as increased avian species diversity and waterbird abundance. This demonstration project validated the IMM conceptual approach and may serve as a case study for similar IMM projects in the future.  相似文献   

6.
Yozzo  David J.  Smith  David E. 《Hydrobiologia》1997,362(1-3):9-19
Previous research on intertidal nekton communities has identifiedimportant determinants of community structure and distribution; however, fewstudies have compared nekton utilization of disparate marsh habitats. Inthis study, abundance and distribution patterns of resident nekton werecompared between tidal freshwater marsh and salt marsh surfaces varying inflooding depth and duration. Nekton were collected in pit traps installedalong elevational transects at four marshes in coastal Virginia (twofreshwater, two saline) from April through November 1992–1993. Thedominant fish collected at all sites was the mummichog Fundulusheteroclitus. The daggerblade grass shrimp Palaemonetes pugio was thedominant nekton species collected at salt marsh sites, and was seasonallyabundant on tidal freshwater marshes. A positive correlation betweenflooding depth and nekton abundance was observed on salt marshes; anopposite pattern was observed on tidal freshwater marshes. Tidal floodingregime influences the abundance of resident nekton, however, the effect maybe confounded by other environmental variables, including variation insurface topography and seasonal presence or absence of submerged aquaticvegetation (SAV) in adjacent subtidal areas. In mid-Atlantic tidalfreshwater wetlands, SAV provides a predation refuge and forage site forearly life stages of marsh-dependent nekton, and several species utilizethis environment extensively. Salt marshes in this region generally lackdense SAV in adjacent subtidal creeks. Consequently, between-sitedifferences in species and size-specific marsh surface utilization byresident nekton were observed. Larvae and juveniles represented 79%and 59% of total fish collected at tidal freshwater and salt marshsites, respectively. The resident nekton communities of tidal freshwater andsalt marsh surfaces are characterized by a few ubiquitous species with broadenvironmental tolerances. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Animal-pollinated invasive species have frequently been demonstrated to outcompete native species for pollinator attention, which can have detrimental effects on the reproductive success and population dynamics of native species. Many animal-pollinated invasive species exhibit showy flowers and provide substantial rewards, allowing them to act as pollinator ‘magnets’, which, at a large scale, can attract more pollinators to an area, but, at a smaller scale, may reduce compatible pollen flow to local native species, possibly explaining why most studies detect competition. By performing pollen limitation experiments of populations in both invaded and uninvaded sites, we demonstrate that the invasive plant Lythrum salicaria appears to facilitate, rather than hinder, the reproductive success of native confamilial Decodon verticillatus, even at a small scale, in a wetland habitat in southeastern Ontario. We found no evidence for a magnet species effect on pollinator attraction to invaded sites. Germination experiments confirmed that seeds from invaded sites had similar germination rates to those from uninvaded sites, making it unlikely that a difference in inbreeding was masking competitive effects. We describe several explanations for our findings. Notably, there were no differences in seed set among populations at invaded and uninvaded sites. Our results underscore the inherent complexity of studying the ecological impacts of invasive species on natives.  相似文献   

8.
The invasion of the exotic dioecious shrub Baccharis halimifolia is transforming the estuarine communities of Southern Europe. Large scale gradients of salinity and flooding regime determine B. halimifolia zonations in salt marshes where the subhalophilous sea rush communities are the most affected by invasion. In this study we aim to (1) assess the invasion level and influence of B. halimifolia on native flora and to (2) quantify the performance of the exotic shrub in rush communities across fine-scale salinity and waterlogging gradients. Using floristic data collected in estuaries in Northern Spain we identified 3 sea rush community subtypes: low, medium and high salinity communities. B. halimifolia cover decreased from low to high salinity communities. Native species cover, richness and diversity and herbaceous-subshrub layer cover was significantly lower in invaded rush communities than in uninvaded ones. The reduction of the singular native estuarine species cover and richness was higher in the high and medium salinity community than in the low salinity community. Growth and reproductive traits measured on two consecutive years in invaded rush communities in Urdaibai Biosphere Reserve indicated that increased edaphic stress reduced B. halimifolia individual performance and enhanced attack by natural enemies. Moreover, leaf drop was more responsive to salinity in female than in male individuals. We conclude that fine-scale variations on edaphic stress played an important role in the invasibility of rush communities by affecting the individual performance of B. halimifolia, and might generate sex specific responses. The implications for rush marsh conservation are discussed.  相似文献   

9.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

10.
This synthesis brings together published and unpublished data in an evaluation of restoration of former salt hay farms to functioning salt marshes. We compared nine years of field measurements between three restored marshes (Dennis, Commercial, and Maurice River Townships) and a reference marsh (Moores Beach) in the mesohaline portion of Delaware Bay. In the process, we compared channel morphology, geomorphology, vegetation, sediment organic matter, fish assemblages, blue crabs, horseshoe crabs, benthic infauna, and diamondback terrapins. For fishes we compared structural (distribution, abundance) and functional (feeding, growth, survival, reproduction, production) aspects to evaluate the restored marshes in an Essential Fish Habitat context. Marsh vegetation and drainage density responded gradually and positively with restored marshes approximating the state of the reference marsh within the nine-year study period. The fauna responded more quickly and dramatically with most measures equal or greater in the restored marshes within the first one or two years after restoration. Differences in response time between the vegetation and the fauna imply that the faunal response was more dependent on access to the shallow intertidal marsh surface and intertidal and subtidal creeks than on characteristics of the vegetated marsh. The fishes in created subtidal creeks in restored marshes responded immediately and maintained fish assemblages similar to the reference marsh over the study period. The intertidal creek fish assemblages tended to become more like the reference marsh in the last years of the comparison. Overall, these results document the success of the restoration and how marshes function for both resident and transient fauna, especially fishes.  相似文献   

11.
During recent work examining the effects of Bitou Bush (Chrysanthemoides monilifera ssp. rotundata) invasion on native reptile assemblages in coastal heathland vegetation in Eastern Australia, unplanned spot‐spraying of glyphosate occurred at some of our experimental sites invaded by Bitou Bush. We used this unexpected herbicide application as an opportunity to provide a preliminary assessment of the short‐term impacts on reptiles of glyphosate spot‐spraying of Bitou Bush. Using an M‐BARCI design, we compared reptile assemblages among uninvaded (reference) sites, invaded (control) sites and invaded and sprayed (impact) sites before and after spraying. We found no significant short‐term (7 – 10 months) differences in reptile abundance, species richness or assemblage composition among invaded, uninvaded and sprayed sites before and after glyphosate application. We cautiously interpret our results to generate a preliminary finding that spot‐spraying of Bitou Bush with glyphosate appears not to have a deleterious effect on reptile assemblages at seven and ten months following herbicide application. While we would not recommend basing management decisions on the outcomes of our study alone, we suggest that our findings can be used to assist in the development of strategic analyses of glyphosate impacts on native flora and fauna.  相似文献   

12.
In the oligohaline Alloway Creek watershed of the upper Delaware Bay, invasive Phragmites australis (Common reed; hereafter Phragmites) has been removed in an attempt to restore tidal marshes to pre‐invasion form and function. In order to determine the effects of Phragmites on nekton use of intertidal creeks and to evaluate the success of this restoration, intertidal creek nekton assemblages were sampled with weirs from May to November for 7 years (1999‐2005) in three marsh types: natural Spartina alterniflora (Smooth cordgrass; hereafter Spartina), sites treated for Phragmites removal (hereafter referred to as Treated), and invasive Phragmites marshes. Replicate intertidal creek collections in all three marsh types consisted primarily of resident nekton and were dominated by a relatively low number of ubiquitous intertidal species. The Treated marsh nekton assemblage was distinguished by greater abundances of most nekton, especially Fundulus heteroclitus (Mummichog). Phragmites had little impact on nekton use of intertidal creeks over this period as evidenced by similar nekton assemblages in the Spartina and Phragmites marshes for most years. Long‐term assemblage‐level analyses and nekton abundances indicated that the Treated marsh provided enhanced conditions for intertidal creek nekton. The response of intertidal creek nekton suggests that the stage of the restoration may influence the results of comparisons between the marsh types and should be considered when evaluating marsh restorations.  相似文献   

13.
Nekton (fishes and decapod crustaceans) is an abundant and productive faunal component of salt marshes, yet nekton responses to tidal manipulations of New England salt marshes remain unclear. This study examined nekton use of a tidally restricted salt marsh in Narragansett, Rhode Island relative to an unrestricted marsh during summer. In addition, a before‐after‐control‐impact design was used to examine early responses of nekton to the reintroduction of natural tidal flushing. Species richness and densities of Cyprinodon variegatus, Lucania parva, Menidia beryllina, and Palaemonetes pugio were higher in the restricted marsh compared with the unrestricted marsh. The unrestricted marsh supported higher densities of Menidia menidia and Fundulus majalis. Mean lengths of Carcinus maenas and P. pugio were greater in the restricted marsh. Tidal restoration resulted in increased tidal flushing, salinity, and water depth in the restricted marsh. Densities of Fundulus heteroclitus, F. majalis, and Callinectes sapidus were higher after 2 years of restoration. Density of L. parva decreased after restoration, probably in response to a loss of macroalgal habitat. Species richness also decreased after 2 years, from 20.9 species when the marsh was restricted to 13.0 species. Total nekton density did not change with restoration, but shifts in community composition were evident. In this study restoration induced rapid changes in the composition, density, size, and distribution of nekton species, but additional monitoring is necessary to quantify longer‐term effects of salt marsh restoration on nekton.  相似文献   

14.
Increasing attention in invasion biology is being paid to measuring and understanding the impacts of invasive species. For plant invasions, however, the impact of invasion on soil seed bank communities has been under-studied. At six sites in southern Germany, we investigated whether areas invaded by Solidago gigantea and Solidago canadensis experienced a reduction in seed bank species richness, size and diversity, and a change in species composition compared to adjacent uninvaded areas. We found no overall effect of invasion on seed bank size, or on species richness and diversity. Seed bank size significantly decreased from 0–5 cm to 5–10 cm depth in both invaded and uninvaded areas. A significant amount of variation in species composition was explained by invasion, but it was only one-tenth of that explained solely by site effects. Our study suggests that invasion by Solidago species may not have the same impacts on the soil seed banks of native species as other invasive perennial forbs that have so far been studied.  相似文献   

15.
Studies of seed bank development have rarely been included in evaluations of wetland restoration. We compared the seed bank of a recently restored tidal freshwater marsh in Washington, D.C., Kingman Marsh, with seed banks of another restored site (Kenilworth Marsh) and two reference marshes (Dueling Creek and Patuxent Marsh). The density and richness of emerging seedlings from Kingman Marsh seed bank samples increased from less than 4 seedlings and 2 taxa/90-cm2 sample in 2000 (the year of restoration) to more than 130 seedlings and 10 taxa/90-cm2 sample in 2003. The most important seed bank taxa at Kingman Marsh included Cyperus spp., Juncus spp., Lindernia dubia , Ludwigia palustris , and the non-native Lythrum salicaria . These taxa are not abundant in most mid-Atlantic tidal freshwater marshes but are almost identical to those described for a created tidal freshwater wetland in New Jersey. Seed banks of both the restored sites contained few seeds of several important species found at the reference sites. Flooding had a significant negative effect on emerging seedling density and taxa density, suggesting that slight decreases in soil elevation in restored wetlands will dramatically decrease recruitment from the seed bank. Because seed banks integrate processes affecting growth and reproduction of standing vegetation, we suggest that seed banks are a useful metric of wetland restoration success and urge that seed bank studies be incorporated into monitoring programs for restored wetlands.  相似文献   

16.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

17.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   

18.
He Q  Cui B  An Y 《PloS one》2012,7(3):e33164

Background

Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive.

Methodology and Principal Findings

We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China.

Conclusions and Significance

We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments.  相似文献   

19.
Invasive plant species generally reduce the abundance and diversity of local plant species, which may translate into alterations at higher tropic levels, such as arthropods. Due to the diverse functional roles of arthropods in the ecosystems, it is critical to understand how arthropod communities are affected by plant invasions. Here, we investigated the impact of the invasive ornamental herb Lupinus polyphyllus (Lindl.) on arthropod communities during its main flowering period in southwestern Finland over two years. The total number of arthropods was about 46% smaller at the invaded sites than at the uninvaded sites in both study years, and this difference was mainly due to a lower abundance of beetles, Diptera, Lepidoptera, and ants. However, the number of bumblebees (particularly Bombus lucorum) was about twice as high at invaded sites compared with uninvaded sites, even though bumblebee richness did not differ between sites. There was no statistically significant difference between invaded and uninvaded sites in the abundances of the other arthropod groups considered (Hymenoptera (excluding bumblebees and ants), Hemiptera, and Arachnida). In addition, L. polyphyllus affected the relative abundance of four arthropod groups, with the order Lepidoptera being less common at invaded sites than at uninvaded sites, while the opposite was true for bumblebees, Hemiptera, and Arachnida. Overall, these results demonstrate that the negative impact of L. polyphyllus on biodiversity goes beyond its own trophic level, suggesting that this species has the potential to alter the abundance of different arthropod groups and, consequently, the structure of arthropod communities at a large scale.  相似文献   

20.
Ecological restoration is increasingly used to reverse degradation of rare ecosystems and maintain biological diversity. Pollinator communities are critical to maintenance of plant diversity and, in light of recent pollinator loss, we tested whether removal of invasive glossy buckthorn (Frangula alnus L.) from portions of a prairie fen wetland altered plant and pollinator communities. We compared herbaceous plant, bee, and butterfly abundance, diversity, and species composition in buckthorn invaded, buckthorn removal, and uninvaded reference plots. Following restoration, we found striking differences in plant and pollinator abundance and species composition between restored, unrestored, and reference plots. Within 2 years of F. alnus removal, plant species diversity and composition in restored plots were significantly different than invaded plots, but also remained significantly lower than reference plots. In contrast, in the first growing season following restoration, bee and butterfly abundance, diversity, and composition were similar in restored and reference plots and distinct from invaded plots. Our findings indicate that a diverse community of mobile generalist pollinators rapidly re‐colonizes restored areas of prairie fen, while the plant community may take longer to fully recover. This work implies that, in areas with intact pollinator metapopulations, restoration efforts will likely prevent further loss of mobile generalist pollinators and maintain pollination services. On the other hand, targeted restoration efforts will likely be required to restore populations of rare plants and specialist pollinators for which local and regional species pools may be lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号