首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages.  相似文献   

2.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

3.
We have used specific cloned cDNA probes generated from the mRNA coding for the vitamin D-induced 28,000-Da chick intestinal calcium binding protein (calbindin) to study the hormonal regulation of the expression of this mRNA by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. The calbindin-mRNA has been analyzed in chicken intestinal poly(A)+ mRNA samples as well as other chicken tissues by "Northern" blot analysis. There exists a predominant mRNA species of approximately 2000 nucleotides and two minor cross-hybridizing species that are nearly equivalent in proportion; their sizes are approximately 2600 and 3100 nucleotides. All three mRNA species are nonexistent in the chick intestine in the absence of vitamin D3 intake. However, all three mRNA species begin to accumulate at the same time in the chick intestine following the administration of the hormonally active metabolite of vitamin D3, 1,25-(OH)2D3. This response in the intestine is very similar to other steroid hormone-regulated gene products. All three mRNA species exist in the cell cytoplasm and are present on soluble polysome complexes, suggesting that all three are engaged in protein synthesis. Examination of other chick tissues (both vitamin D-deficient and -replete) reveals a close association between mRNA expression and previously observed calbindin expression. Each tissue is unique in the steady-state level of expression of the calbindin-mRNAs.  相似文献   

4.
Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)(2)D(3), the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)(2)D(3) is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)(2)D(3) treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 μg/kg 1,25(OH)(2)D(3) for one week, or intermittent 3 μg/kg 1,25(OH)(2)D(3) for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)(2)D(3)-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)(2)D(3) increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)(2)D(3) lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)(2)D(3)-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)(2)D(3) on intracortical bone formation. This study shows negative effects of 1,25(OH)(2)D(3) on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients.  相似文献   

5.
6.
7.
We have used a specific cDNA to the mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28k) to study the regulation of the expression of this mRNA in rat kidney and brain. The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and dietary alteration on genomic expression were characterized by both Northern and slot blot analysis. Administration of 1,25-(OH)2D3 for 7 days (25 ng/day) to vitamin D-deficient rats resulted in a marked increase in renal calbindin-DmRNA, renal calbindin, and serum calcium. When vitamin D-deficient rats were supplemented for 10 days with calcium (3% calcium gluconate in the water, 2% calcium in the diet) serum calcium levels were similar to the levels observed in the 1,25-(OH)2D3-treated rats. However, in the calcium-supplemented rats the levels of renal calbindin and renal calbindin mRNA were similar to the levels observed in the vitamin D-deficient rats, suggesting that calcium alone without vitamin D does not regulate renal calbindin gene expression in vivo. In dietary alteration studies in vitamin D-replete rats, renal calbindin protein and mRNA increased 2.5-fold in rats fed diets low in phosphate providing evidence that in the rat the nutritional induction of calbindin is accompanied by a corresponding alteration in the concentration of its specific mRNA. Under low dietary calcium conditions, the levels of renal calbindin protein and mRNA were similar to the levels observed in control rats, although 1,25-(OH)2D3 serum levels were markedly elevated, suggesting that factors in addition to 1,25-(OH)2D3 can modulate renal calbindin gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
CYP27A1 catalyses hydroxylations in the biosynthesis of bile acids and the bioactivation of vitamin D3. We investigated the expression of CYP27A1 in human monocytes, monocyte-derived macrophages, and dendritic cells on mRNA and protein levels as well as its enzymatic activity in comparison with the expression of CYP27B1 and CYP24A1. Macrophages showed a strong expression of CYP27A1, whereas monocytes and dendritic cells expressed low levels of CYP27A1 mRNA. Immunohistochemistry revealed CYP27A1 and CYP27B1 protein expression in macrophages. Accordingly, macrophages converted vitamin D3 into the active metabolite 1,25(OH)2D3. Dendritic cells also metabolized vitamin D3 although to a lesser extent. This could be due to the high expression of CYP24A1, the enzyme that degrades 25(OH)D3 and 1,25(OH)2D3. Our results show that macrophages and dendritic cells are capable to perform both hydroxylation steps of the vitamin D3 metabolism suggesting a possible role of local 1,25(OH)2D3 synthesis by myeloid cells in the skin and gut.  相似文献   

10.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   

11.
12.
13.
14.
Previous studies have shown that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] decreases levels of mRNA for prepro-PTH as well as PTH secretion after chronic exposure (24-48 h) of parathyroid cells in tissue culture. We have now extended these studies to determine the effects of the vitamin D3 metabolite on parathyroid secretory protein (PSP) gene expression. Primary cultures of bovine parathyroid cells were incubated with 10(-8) M 1,25-(OH)2D3 for periods of time ranging from 24-72 h. As observed in earlier experiments, prepro-PTH mRNA decreased to less than 50% of the control value after 72 h. In marked contrast, PSP mRNA showed a 2.5-fold increase by 24 h and greater than 7-fold stimulation by 72 h. In the same studies, PTH secretion was suppressed (to 60% of control), while PSP secretion was increased by 40% over control values. Exposure to high (2.5 mM) or low (0.5 mM) calcium had no effect on PSP mRNA, even though low calcium stimulated the secretion of PSP while high calcium suppressed secretion. These studies showed that 1,25-(OH)2D3 has opposite effects on the gene expression of PSP and PTH in bovine parathyroid cells in tissue culture.  相似文献   

15.
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been reported to stimulate lung maturity, alveolar type II cell differentiation, and pulmonary surfactant synthesis in rat lung. We hypothesized that 1,25(OH)(2)D(3) stimulates expression of surfactant protein-A (SP-A), SP-B, and SP-C in human fetal lung and type II cells. We found that immunoreactive vitamin D receptor was detectable in fetal lung tissue and type II cells only when incubated with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) significantly decreased SP-A mRNA in human fetal lung tissue but did not significantly decrease SP-A protein in the tissue. In type II cells, 1,25(OH)(2)D(3) alone had no significant effect on SP-A mRNA or protein levels but reduced SP-A mRNA and protein in a dose-dependent manner when the cells were incubated with cAMP. SP-A mRNA levels in NCI-H441 cells, a nonciliated bronchiolar epithelial (Clara) cell line, were decreased in a dose-dependent manner in the absence or presence of cAMP. 1,25(OH)(2)D(3) had no significant effect on SP-B mRNA levels in lung tissue but increased SP-B mRNA and protein levels in type II cells incubated in the absence or presence of cAMP. Expression of SP-C mRNA was unaffected by 1,25(OH)(2)D(3) in lung tissue incubated +/- cAMP. These results suggest that regulation of surfactant protein gene expression in human lung and type II cells by 1,25(OH)(2)D(3) is not coordinated; 1,25(OH)(2)D(3) decreases SP-A mRNA and protein levels in both fetal lung tissue and type II cells, increases SP-B mRNA and protein levels only in type II cells, and has no effect on SP-C mRNA levels.  相似文献   

16.
The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], is a potent regulator of human monocyte/macrophage function in vitro. To establish a model for 1,25-(OH)2D3 regulation of human monocyte monokine synthesis, three human cell lines (U-937, THP-1, and HL-60) were examined for: 1) the presence of functional 1,25-(OH)2D3 receptors; 2) the accumulation of interleukin-1 beta (IL-1 beta) mRNA and IL-1 beta protein in response to lipopolysaccharide (LPS); and 3) the regulation of this response by 1,25-(OH)2D3. All three cell lines expressed vitamin D receptor and had increased levels of IL-1 beta mRNA in response to LPS. Preincubation of cells with 1,25-(OH)2D3 augmented IL-1 beta mRNA levels only in U-937 and HL-60 cells. From these data, and taking into consideration their state of differentiation and relative ease of culture, U-937 was chosen over HL-60 and THP-1 as the cell line we further characterized. In U-937 cells, optimum time and dose of pretreatment with 1,25-(OH)2D3 were determined to be 12-24 h at a receptor saturating concentration of 1,25-(OH)2D3 (10 nM). Preincubation of cells with 1,25-(OH)2D3 had no effect on the time course of IL-1 beta mRNA appearance in response to LPS. However, exposure of U-937 cells to 1,25-(OH)2D3 increased by 200% the level of IL-1 beta mRNA detected and decreased by three orders of magnitude the concentration of LPS required to achieve steady state mRNA levels equivalent to those observed in U-937 cells not preincubated with the hormone.2+o  相似文献   

17.
Intragenic polymorphisms in the vitamin D receptor gene are linked to disc degeneration features, suggesting that alterations in the vitamer-mediated signalling could be involved in the pathophysiology of the disc and that interaction of disc cells with vitamin D metabolites may be critical for disc health. The vitamer-mediated modulation of disc cells proliferation, metabolic activity, extracellular matrix (ECM) genes expression and proteins production was investigated. It was stated that disc cells express vitamin D receptor and are very sensitive to metabolic stimuli. In monolayer cultures, 1,25(OH)(2)D(3), but not 24,25(OH)(2)D(3), determined an inhibition of the proliferation and regulated also the ECM genes expression in nucleus pulposus and annulus fibrosus cells. Micromass cultures induced a more physiologic expression pattern of extracellular matrix genes. Cells Treatment with vitamin D metabolites did not result in relevant modifications of glycosaminoglycans production, except for annulus cells, whose production was reduced after 1,25(OH)(2)D(3) treatment. Moreover, a reduced glycosaminoglycans staining in both cell types and a significant reduced aggrecan gene expression in annulus cells treated with 1,25(OH)(2)D(3) were observed. A reduction of collagen I and II staining in annulus cells 1,25(OH)(2)D(3) treated, in accordance with a downregulation of collagen genes expression, was also registered. Finally, the vitamin D receptor gene expression did not show significant metabolite-mediated modification in monolayer or micromass cultures. These findings could enhance new insights on the biochemical mechanisms regulated by vitamin D in disc cartilage and possibly involved in the development of physiological/pathological modifications of the disc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号