首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many patients with Alzheimer's dementia (AD) also exhibit noncognitive symptoms such as sensorimotor deficits, which can precede the hallmark cognitive deficits and significantly impact daily activities and an individual's ability to live independently. However, the mechanisms underlying sensorimotor dysfunction in AD and their relationship with cognitive decline remains poorly understood, due in part to a lack of translationally relevant animal models. To address this, we recently developed a novel model of genetic diversity in Alzheimer's disease, the AD‐BXD genetic reference panel. In this study, we investigated sensorimotor deficits in the AD‐BXDs and the relationship to cognitive decline in these mice. We found that age‐ and AD‐related declines in coordination, balance and vestibular function vary significantly across the panel, indicating genetic background strongly influences the expressivity of the familial AD mutations used in the AD‐BXD panel and their impact on motor function. Although young males and females perform comparably regardless of genotype on narrow beam and inclined screen tasks, there were significant sex differences in aging‐ and AD‐related decline, with females exhibiting worse decline than males of the same age and transgene status. Finally, we found that AD motor decline is not correlated with cognitive decline, suggesting that sensorimotor deficits in AD may occur through distinct mechanisms. Overall, our results suggest that AD‐related sensorimotor decline is strongly dependent on background genetics and is independent of dementia and cognitive deficits, suggesting that effective therapeutics for the entire spectrum of AD symptoms will likely require interventions targeting each distinct domain involved in the disease.  相似文献   

2.

Background

It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson''s disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms.

Methodology/Principal Findings

Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested.

Conclusions/Significance

Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits.  相似文献   

3.
Absence of functional FMRP causes Fragile X syndrome. Abnormalities in synaptic processes in the cerebral cortex and hippocampus contribute to cognitive deficits in Fragile X patients. So far, the potential roles of cerebellar deficits have not been investigated. Here, we demonstrate that both global and Purkinje cell-specific knockouts of Fmr1 show deficits in classical delay eye-blink conditioning in that the percentage of conditioned responses as well as their peak amplitude and peak velocity are reduced. Purkinje cells of these mice show elongated spines and enhanced LTD induction at the parallel fiber synapses that innervate these spines. Moreover, Fragile X patients display the same cerebellar deficits in eye-blink conditioning as the mutant mice. These data indicate that a lack of FMRP leads to cerebellar deficits at both the cellular and behavioral levels and raise the possibility that cerebellar dysfunctions can contribute to motor learning deficits in Fragile X patients.  相似文献   

4.
Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death.  相似文献   

5.
6.

Aims

To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery.

Materials and Methods

In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury.

Results

Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion.

Conclusion

Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.  相似文献   

7.
Parkinson''s disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1–2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments similar to PD patients and may provide useful endpoints for assessing novel therapeutic interventions for PD.  相似文献   

8.
Learning is often understood as an organism''s gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments.  相似文献   

9.
Morris M  Koyama A  Masliah E  Mucke L 《PloS one》2011,6(12):e29257
Many neurodegenerative diseases are increasing in prevalence and cannot be prevented or cured. If they shared common pathogenic mechanisms, treatments targeting such mechanisms might be of benefit in multiple conditions. The tau protein has been implicated in the pathogenesis of diverse neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Tau reduction prevents cognitive deficits, behavioral abnormalities and other pathological changes in multiple AD mouse models. Here we examined whether tau reduction also prevents motor deficits and pathological alterations in two mouse models of PD, generated by unilateral striatal injection of 6-hydroxydopamine (6-OHDA) or transgene-mediated neuronal expression of human wildtype α-synuclein. Both models were evaluated on Tau(+/+), Tau(+/-) and Tau(-/-) backgrounds in a variety of motor tests. Tau reduction did not prevent motor deficits caused by 6-OHDA and slightly worsened one of them. Tau reduction also did not prevent 6-OHDA-induced loss of dopaminergic terminals in the striatum. Similarly, tau reduction did not prevent motor deficits in α-synuclein transgenic mice. Our results suggest that tau has distinct roles in the pathogeneses of AD and PD and that tau reduction may not be of benefit in the latter condition.  相似文献   

10.
Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.  相似文献   

11.
Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited disease, characterized by various neurocutaneous symptoms, cognitive impairments and problems in fine and gross motor performance. Although cognitive deficits in NF1 have been attributed to increased release of the inhibitory neurotransmitter γ-amino butyric acid (GABA) in the hippocampus, the origin of the motor deficits is unknown. Cerebellar Purkinje cells, the sole output neurons of the cerebellar cortex, are GABAergic neurons and express neurofibromin at high levels, suggesting an important role for the cerebellum in the observed motor deficits in NF1. To test this, we determined the cerebellar contribution to motor problems in Nf1(+/-) mice, a validated mouse model for NF1. Using the Rotarod, a non-specific motor performance test, we confirmed that, like NF1 patients, Nf1(+/-) mice have motor deficits. Next, to evaluate the role of the cerebellum in these deficits, mice were subjected to cerebellum-specific motor performance and learning tests. Nf1(+/-) mice showed no impairment on the Erasmus ladder, as step time and number of missteps were not different. Furthermore, when compensatory eye movements were tested, no performance deficits were found in the optokinetic reflex and vestibulo-ocular reflex in the dark (VOR) or in the light (VVOR). Finally, Nf1(+/-) mice successfully completed short- and long-term VOR adaptation paradigms, tests that both depend on cerebellar function. Thus, despite the confirmed presence of motor performance problems in Nf1(+/-) mice, we found no indication of a cerebellar component. These results, combined with recent clinical data, suggest that cerebellar function is not overtly affected in NF1 patients.  相似文献   

12.
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats'' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models.  相似文献   

13.
Neurofibromatosis Type 1 (NF1) is a genetic neurocutaneous disorder with multisystem manifestations, including a predisposition to tumor formation and bone dysplasias. Studies over the last decade have shown that NF1 can also be associated with significant motor deficits, such as poor coordination, low muscle tone, and easy fatigability. These have traditionally been ascribed to developmental central nervous system and cognitive deficits. However, recent preclinical studies have also illustrated a primary role for the NF1 gene product in muscle growth and metabolism; these findings are consistent with clinical studies demonstrating reduced muscle size and muscle weakness in individuals with NF1. Currently there is no evidence-based intervention for NF1 muscle and motor deficiencies; this review identifies key research areas where improved mechanistic understanding could unlock new therapeutic options.  相似文献   

14.
Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnomalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC), an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp21lox mouse model of RTT. In this study, wildtype and Mecp21lox mutant mice received daily injections of ALC from birth until death (postnatal day 47). General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies.  相似文献   

15.
Neuroinflammation is a major risk factor in Parkinson's disease (PD). Alternative approaches are needed to treat inflammation, as anti-inflammatory drugs such as NSAIDs that inhibit cyclooxygenase-2 (COX-2) can produce devastating side effects, including heart attack and stroke. New therapeutic strategies that target factors downstream of COX-2, such as prostaglandin J2 (PGJ2), hold tremendous promise because they will not alter the homeostatic balance offered by COX-2 derived prostanoids. In the current studies, we report that repeated microinfusion of PGJ2 into the substantia nigra of non-transgenic mice, induces three stages of pathology that mimic the slow-onset cellular and behavioral pathology of PD: mild (one injection) when only motor deficits are detectable, intermediate (two injections) when neuronal and motor deficits as well as microglia activation are detectable, and severe (four injections) when dopaminergic neuronal loss is massive accompanied by microglia activation and motor deficits. Microglia activation was evaluated in vivo by positron emission tomography (PET) with [11C](R)PK11195 to provide a regional estimation of brain inflammation. PACAP27 reduced dopaminergic neuronal loss and motor deficits induced by PGJ2, without preventing microglia activation. The latter could be problematic in that persistent microglia activation can exert long-term deleterious effects on neurons and behavior. In conclusion, this PGJ2-induced mouse model that mimics in part chronic inflammation, exhibits slow-onset PD-like pathology and is optimal for testing diagnostic tools such as PET, as well as therapies designed to target the integrated signaling across neurons and microglia, to fully benefit patients with PD.  相似文献   

16.
Protein kinase C (PKC) shows a neuronal protection effect in neurodegenerative diseases. In this study, we test whether berberine has a positive effect on the activity of PKC in quinolinic acid (QA)‐induced neuronal cell death. We used intrastriatal injections of QA mice model to test the effect of berberine on motor and cognitive deficits, and the PKC signalling pathway. Treatment with 50 mg/kg b.w of berberine for 2 weeks significantly prevented QA‐induced motor and cognitive impairment and related pathologic changes in the brain. QA inhibited the phosphorylation of PKC and its downstream molecules, GSK‐3β, ERK and CREB, enhanced the glutamate level and release of neuroinflammatory cytokines; these effects were attenuated by berberine. We used in vivo infusion of Go6983, a PKC inhibitor to disturb PKC activity in mice brain, and found that the effect of berberine to reverse motor and cognitive deficits was significantly reduced. Moreover, inhibition of PKC also blocked the anti‐excitotoxicity effect of berberine, which is induced by glutamate in PC12 cells and BV2 cells, as well as anti‐neuroinflammatory effect in LPS‐stimulated BV2 cells. Above all, berberine showed neuroprotective effect against QA‐induced acute neurotoxicity by activating PKC and its downstream molecules.  相似文献   

17.
Patients with Huntington''s disease (HD) are often described as unaware of their motor symptoms, their behavioral disorders or their cognitive deficits, including memory. Nevertheless, because patients with Parkinson''s disease (PD) remain aware of their memory deficits despite striatal dysfunction, we hypothesize that early stage HD patients in whom degeneration predominates in the striatum can accurately judge their own memory disorders whereas more advanced patients cannot. In order to test our hypothesis, we compared subjective questionnaires of memory deficits (in HD patients and in their proxies) and objective measures of memory dysfunction in patients. Forty-six patients with manifest HD attending the out-patient department of the French National Reference Center for HD and thirty-three proxies were enrolled. We found that HD patients at an early stage of the disease (Stage 1) were more accurate than their proxies at evaluating their own memory deficits, independently from their depression level. The proxies were more influenced by patients'' functional decline rather than by patients'' memory deficits. Patients with moderate disease (Stage 2) misestimated their memory deficits compared to their proxies, whose judgment was nonetheless influenced by the severity of both functional decline and depression. Contrasting subjective memory ratings from the patients and their objective memory performance, we demonstrate that although HD patients are often reported to be unaware of their neurological, cognitive and behavioral symptoms, it is not the case for memory deficits at an early stage. Loss of awareness of memory deficits in HD is associated with the severity of the disease in terms of CAG repeats, functional decline, motor dysfunction and cognitive impairment, including memory deficits and executive dysfunction.  相似文献   

18.
Subarachnoid hemorrhage (SAH) is a devastating disease with high mortality and morbidity. Long-term cognitive and sensorimotor deficits are serious complications following SAH but still not well explained and described in mouse preclinical models. The aim of our study is to characterize a well-mastered SAH murine model and to establish developing pathological mechanisms leading to cognitive and motor deficits, allowing identification of specific targets involved in these long-term troubles. We hereby demonstrate that the double blood injection model of SAH induced long-lasting large cerebral artery vasospasm (CVS), microthrombosis formation and cerebral brain damage including defect in potential paravascular diffusion. These neurobiological alterations appear to be associated with sensorimotor and cognitive dysfunctions mainly detected 10 days after the bleeding episode. In conclusion, this characterized model of SAH in mice, stressing prolonged neurobiological pathological mechanisms and associated sensitivomotor deficits, will constitute a validated preclinical model to better decipher the link between CVS, long-term cerebral apoptosis and cognitive disorders occurring during SAH and to allow investigating novel therapeutic approaches in transgenic mice.  相似文献   

19.
Neuroprosthetic devices such as a computer cursor can be controlled by the activity of cortical neurons when an appropriate algorithm is used to decode motor intention. Algorithms which have been proposed for this purpose range from the simple population vector algorithm (PVA) and optimal linear estimator (OLE) to various versions of Bayesian decoders. Although Bayesian decoders typically provide the most accurate off-line reconstructions, it is not known which model assumptions in these algorithms are critical for improving decoding performance. Furthermore, it is not necessarily true that improvements (or deficits) in off-line reconstruction will translate into improvements (or deficits) in on-line control, as the subject might compensate for the specifics of the decoder in use at the time. Here we show that by comparing the performance of nine decoders, assumptions about uniformly distributed preferred directions and the way the cursor trajectories are smoothed have the most impact on decoder performance in off-line reconstruction, while assumptions about tuning curve linearity and spike count variance play relatively minor roles. In on-line control, subjects compensate for directional biases caused by non-uniformly distributed preferred directions, leaving cursor smoothing differences as the largest single algorithmic difference driving decoder performance.  相似文献   

20.
Although children with epilepsy exhibit numerous neurological and cognitive deficits, the mechanisms underlying these impairments remain unclear. Synchronization of oscillatory neural activity in the gamma frequency range (>30 Hz) is purported to be a mechanism mediating functional integration within neuronal networks supporting cognition, perception and action. Here, we tested the hypothesis that seizure-induced alterations in gamma synchronization are associated with functional deficits. By calculating synchrony among electrodes and performing graph theoretical analysis, we assessed functional connectivity and local network structure of the hand motor area of children with focal epilepsy from intracranial electroencephalographic recordings. A local decrease in inter-electrode phase synchrony in the gamma bands during ictal periods, relative to interictal periods, within the motor cortex was strongly associated with clinical motor weakness. Gamma-band ictal desychronization was a stronger predictor of deficits than the presence of the seizure-onset zone or lesion within the motor cortex. There was a positive correlation between the magnitude of ictal desychronization and impairment of motor dexterity in the contralateral, but not ipsilateral hand. There was no association between ictal desynchronization within the hand motor area and non-motor deficits. This study uniquely demonstrates that seizure-induced disturbances in cortical functional connectivity are associated with network-specific neurological deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号