首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tumour necrosis factor alpha (TNF alpha)-converting enzyme (TACE/ADAM-17, where ADAM stands for a disintegrin and metalloproteinase) releases from the cell surface the extracellular domains of TNF and several other proteins. Previous studies have found that, while purified TACE preferentially cleaves peptides representing the processing sites in TNF and transforming growth factor alpha, the cellular enzyme nonetheless also sheds proteins with divergent cleavage sites very efficiently. More recent work, identifying the cleavage site in the p75 TNF receptor, quantifying the susceptibility of additional peptides to cleavage by TACE and identifying additional protein substrates, underlines the complexity of TACE-substrate interactions. In addition to substrate specificity, the mechanism underlying the increased rate of shedding caused by agents that activate cells remains poorly understood. Recent work in this area, utilizing a peptide substrate as a probe for cellular TACE activity, indicates that the intrinsic activity of the enzyme is somehow increased.  相似文献   

2.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

3.
TNF-alpha-converting enzyme (TACE, ADAM17) cleaves membrane-associated cytokines and receptors and thereby regulates inflammatory and immune events, as well as lung development and mucin production. For example, the TACE-mediated cleavage of the type II 75-kDa TNF receptor (TNFR2) generates a soluble TNF-binding protein that modulates TNF bioactivity. TACE is synthesized as a latent proenzyme that is retained in an inactive state via an interaction between its prodomain and catalytic domain. Although the formation of an intramolecular bond between a cysteine in the prodomain and a zinc atom in the catalytic site had been thought to mediate this inhibitory activity, it was recently reported that the cysteine-switch motif is not required. Here, we hypothesized that the amino terminus of the TACE prodomain might contribute to the ability of the prodomain to maintain TACE in an inactive state independently of a cysteine-switch mechanism. We synthesized a 37-amino acid peptide corresponding to TACE amino acids 18-54 (N-TACE(18-54)) and assessed whether it possessed TACE inhibitory activity. In an in vitro model assay system, N-TACE(18-54) attenuated TACE-catalyzed cleavage of a TNFR2:Fc substrate. Furthermore, N-TACE(18-54) inhibited constitutive TNFR2 shedding from a human monocytic cell line by 42%. A 19-amino acid, leucine-rich domain, corresponding to TACE amino acids 30-48, demonstrated partial inhibitory activity. In summary, we have identified a subdomain within the amino terminus of the TACE prodomain that attenuates TACE catalytic activity independently of a cysteine-switch mechanism, which provides new insight into the regulation of TACE enzymatic activity.  相似文献   

4.
The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease that cleaves several transmembrane proteins, including TNF and its receptors (TNFR1 and TNFR2). We recently showed that the shedding activity of ADAM17 is sequestered in lipid rafts and that cholesterol depletion increased the shedding of ADAM17 substrates. These data suggested that ADAM17 activity could be regulated by cholesterol movements in the cell membrane. We investigated if the membrane cholesterol efflux induced by high-density lipoproteins (HDLs) was able to modify the shedding of ADAM17 substrates. HDLs added to different cell types, increased the ectodomain shedding of TNFR2, TNFR1, and TNF, an effect reduced by inhibitors active on ADAM17. The HDLs-stimulated TNF release occurred also on cell-free isolated plasma membranes. Purified apoA1 increased the shedding of TNF in an ABCA1-dependent manner, suggesting a role for the cholesterol efflux in this phenomenon. HDLs reduced the cholesterol and proteins (including ADAM17) content of lipid rafts and triggered the ADAM17-dependent cleavage of TNF in the non-raft region of the membrane. In conclusion, these data demonstrate that HDLs alter the lipid raft structure, which in turn activates the ADAM17-dependent processing of transmembrane substrates.  相似文献   

5.
An aminopeptidase,ARTS-1, is required for interleukin-6 receptor shedding   总被引:1,自引:0,他引:1  
Aminopeptidase regulator of TNFR1 shedding (ARTS-1) binds to the type I tumor necrosis factor receptor (TNFR1) and promotes receptor shedding. Because hydroxamic acid-based metalloprotease inhibitors prevent shedding of both TNFR1 and the interleukin-6 receptor (IL-6Ralpha), we hypothesized that ARTS-1 might also regulate shedding of IL-6Ralpha, a member of the type I cytokine receptor superfamily that is structurally different from TNFR1. Reciprocal co-immunoprecipitation experiments identified that membrane-associated ARTS-1 directly binds to a 55-kDa IL-6Ralpha, a size consistent with soluble IL-6Ralpha generated by ectodomain cleavage of the membrane-bound receptor. Furthermore, ARTS-1 promoted IL-6Ralpha shedding, as demonstrated by a direct correlation between increased membrane-associated ARTS-1 protein, increased IL-6Ralpha shedding, and decreased membrane-associated IL-6Ralpha in cell lines overexpressing ARTS-1. The absence of basal IL-6Ralpha shedding from arts-1 knock-out cells identified that ARTS-1 was required for constitutive IL-6Ralpha shedding. Furthermore, the mechanism of constitutive IL-6Ralpha shedding requires ARTS-1 catalytic activity. Thus, ARTS-1 promotes the shedding of two cytokine receptor superfamilies, the type I cytokine receptor superfamily (IL-6Ralpha) and the TNF receptor superfamily (TNFR1). We propose that ARTS-1 is a multifunctional aminopeptidase that may modulate inflammatory events by promoting IL-6Ralpha and TNFR1 shedding.  相似文献   

6.
We previously reported that macrophage activators such as LPS, IL-2, and IL-4 down-modulate the M-CSFR via a mechanism involving protein kinase C and phospholipase C. In this study, we showed that M-CSFR is shed from macrophage surface and identified the protease responsible for M-CSFR cleavage and down-modulation. The shedding of M-CSFR elicited by phorbol esters (tetradecanoylphorbol myristate acetate (TPA)) or LPS in murine BAC.1-2F5 macrophages was prevented by cation chelators, as well as hydroxamate-based competitive inhibitors of metalloproteases. We found that the protease cleaving M-CSFR is a transmembrane enzyme and that its expression is controlled by furin-like serine endoproteases, which selectively process transmembrane metalloproteases. M-CSFR down-modulation was inhibited by treating cells in vivo, before TPA stimulation, with an Ab raised against the extracellular, catalytic domain of proTNF-converting enzyme (TACE). TACE expression was confirmed in BAC.1-2F5 cells and found inhibited after blocking furin-dependent processing. Using TACE-negative murine Dexter-ras-myc cell monocytes, we found that in these cells TPA is unable to down-modulate M-CSFR expression. These data indicated that TACE is required for the TPA-induced M-CSFR cleavage. The possibility that the cleavage is indirectly driven by TACE via the release of TNF was excluded by treating cells in vivo with anti-TNF Ab. Thus, we concluded that TACE is the protease responsible for M-CSFR shedding and down-modulation in mononuclear phagocytes undergoing activation. The possible physiological relevance of this mechanism is discussed.  相似文献   

7.
Protein ectodomain shedding, the proteolytic release of the extracellullar domain of membrane-tethered proteins, can dramatically affect the function of cell surface receptors, growth factors, cytokines, and other proteins. In this study, we evaluated the activities involved in ectodomain shedding of p75NTR, a neurotrophin receptor with critical roles in neuronal differentiation and survival. p75NTR is shed in a variety of cell types, including dorsal root ganglia cells and PC12 cells. In Chinese hamster ovary cells, inhibitors of the MEK/ERK and p38 MAP kinase pathways uncovered distinct signaling pathways required for the constitutive and stimulated shedding of p75NTR. Stimulated p75NTR shedding is abrogated in M2 mutant Chinese hamster ovary cells that lack functional tumor necrosis factor-alpha converting enzyme (TACE, also referred to as ADAM17) and in cells isolated from adam17-/- mice, but not in cells from adam9/12/15-/- or adam10-/- mice. Stimulated p75(NTR) shedding is strongly reduced by deletion of 15 amino acid residues in its extracellular membrane-proximal stalk domain. However, similar to other shed proteins, point mutations and overlapping shorter deletions within this region have little or no effect on shedding. Because ectodomain shedding of p75NTR releases a soluble ectodomain and could also be a prerequisite for its regulated intramembrane proteolysis, these findings may have important implications for the functional regulation of p75NTR.  相似文献   

8.
Gil C  Cubí R  Aguilera J 《FEBS letters》2007,581(9):1851-1858
Protein ectodomain shedding is the proteolytic release of the extracellular domain of membrane-bound proteins. Neurotrophin receptor p75(NTR) is known to be affected by shedding. The present work provides evidence, in rat brain synaptosomes, that p75(NTR) is present in detergent-resistant membranes (DRM), also known as lipid rafts, only in its full-length form. Disrupting the integrity of lipid rafts causes solubilization of p75(NTR) after detergent treatment and enhancement of the shedding. Analyses of the enzymes described as being responsible for p75(NTR) shedding, i.e. tumor necrosis factor alpha convertase (TACE) and presenilin-1 (PS1), revealed that TACE is absent in DRM, while variable proportions of the C-terminal and N-terminal fragments of PS1 are found. In summary, our results point to a role of lipid rafts in the modulation of the shedding of the p75(NTR) receptor.  相似文献   

9.
We recently reported that expression levels of tumor necrosis factor (TNF) receptors, TNFR1 and TNFR2, are significantly changed in the brains and cerebrospinal fluid (CSF) with Alzheimer's disease (AD). Moreover, we also found that, in an Alzheimer's mouse model, genetic deletion of TNF receptor (TNFR1) reduces amyloid plaques and amyloid beta peptides (Aβ) production through β-secretase (BACE1) regulation. TNF-α converting enzyme (TACE/ADAM-17) does not only cleave pro- TNF-α but also TNF receptors, however, whether the TACE activity was changed in the CSF was not clear. In this study, we examined TACE in the CSF in 32 AD patients and 27 age-matched healthy controls (HCs). Interestingly, we found that TACE activity was significantly elevated in the CSF from AD patients compared with HCs. Furthermore, we also assayed the CSF levels of TACE cleaved soluble forms of TNFR1 and TNFR2 in the same patients. We found that AD patients had higher levels of both TACE cleaved soluble TNFR1 (sTNFR1) and TNFR2 (sTNFR2) in the CSF compared to age- and gender-matched healthy controls. Levels of sTNFR1 correlated strongly with the levels of sTNFR2 (rs = 0.567-0.663, p < 0.01). The levels of both sTNFR1 and sTNFR2 significantly correlated with the TACE activity (rs = 0.491-0.557, p < 0.05). To examine if changes in TACE activity and in levels of cleaved soluble TNFRs are an early event in the course of AD, we measured these molecules in the CSF from 47 subjects with mild cognitive impairment (MCI), which is considered as a preclinical stage of AD. Unexpectedly, we found significantly higher levels of TACE activity and soluble TNFRs in the MCI group than that in AD patients. These results suggest that TACE activity and soluble TNF receptors may be potential diagnostic candidate biomarkers in AD and MCI.  相似文献   

10.
Proteolytic cleavage of the extracellular domain of the type II IL-1 decoy receptor (IL-1RII) generates soluble IL-1-binding proteins that prevent excessive bioactivity by binding free IL-1. In this study we report that an aminopeptidase, aminopeptidase regulator of TNFR1 shedding (ARTS-1), is required for IL-1RII shedding. Coimmunoprecipitation experiments demonstrate an association between endogenous membrane-associated ARTS-1 and a 47-kDa IL-1RII, consistent with ectodomain cleavage of the membrane-bound receptor. A direct correlation exists between ARTS-1 protein expression and IL-1RII shedding, as cell lines overexpressing ARTS-1 have increased IL-1RII shedding and decreased membrane-associated IL-1RII. Basal IL-1RII shedding is absent from ARTS-1 knockout cell lines, demonstrating that ARTS-1 is required for constitutive IL-1RII shedding. Similarly, PMA-mediated IL-1RII shedding is almost entirely ARTS-1-dependent. ARTS-1 expression also enhances ionomycin-induced IL-1RII shedding. ARTS-1 did not alter levels of membrane-associated IL-1RI or IL-1R antagonist release from ARTS-1 cell lines, which suggests that the ability of ARTS-1 to promote shedding of IL-1R family members may be specific for IL-1RII. Further, increased IL-1RII shedding by ARTS-1-overexpressing cells attenuates the biological activity of IL-1beta. We conclude that the ability of ARTS-1 to enhance IL-1RII shedding represents a new mechanism by which IL-1-induced cellular events can be modulated. As ARTS-1 also promotes the shedding of the structurally unrelated 55-kDa, type I TNF receptor and the IL-6R, we propose that ARTS-1 may play an important role in regulating innate immune and inflammatory responses by increasing cytokine receptor shedding.  相似文献   

11.
Tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17) is a metalloprotease disintegrin that cleaves a variety of membrane proteins, releasing ("shedding") their extracellular domains from cells. Most TACE-mediated shedding events occur at low basal rates that are enhanced by treatment of cells with a variety of stimuli. To study the mechanism of induced shedding, we developed a peptide-cleavage assay that measures the cellular TACE activity. In unstimulated cells, cleavage of a TNFalpha processing-site peptide was mediated mainly by enzymes other than TACE. However, stimulation of cells with phorbol-12-myristate-13-acetate (PMA) increased peptide cleavage in a TACE-dependent manner. PMA treatment did not increase the amount of TACE on the cell surface. Moreover, the cytoplasmic domain of TACE was not required for the induced activity. Based on these observations, induction of TACE-mediated shedding events occurs at least in part via an increase in the enzymatic activity of cellular TACE, independent of its cytoplasmic domain.  相似文献   

12.
Extracellular tumor necrosis factor (TNF) receptors function as TNF-binding proteins that modulate TNF activity. In human vascular endothelial cells (HUVEC), extracellular TNFR1 (type I TNF receptor, TNFRSF1A) is generated by two mechanisms, proteolytic cleavage of soluble TNFR1 ectodomains and the release of full-length 55-kDa TNFR1 in the membranes of exosome-like vesicles. TNFR1 release from HUVEC is known to involve the association between ARTS-1 (aminopeptidase regulator of TNFR1 shedding), an integral membrane aminopeptidase, and TNFR1. The goal of this study was to identify ARTS-1 binding partners that modulate TNFR1 release to the extracellular space. A yeast two-hybrid screen of a human placenta cDNA library showed that NUCB2 (nucleobindin 2), via its helix-loop-helix domains, binds the ARTS-1 extracellular domain. The association between endogenous ARTS-1 and NUCB2 in HUVEC was demonstrated by co-immunoprecipitation experiments, which showed the formation of a calcium-dependent NUCB2.ARTS-1 complex that associated with a subset of total cellular TNFR1. Confocal microscopy experiments demonstrated that this association involved a distinct population of NUCB2-containing intracytoplasmic vesicles. RNA interference was utilized to specifically knock down NUCB2 and ARTS-1 expression, which demonstrated that both are required for the constitutive release of a full-length 55-kDa TNFR1 within exosome-like vesicles as well as the inducible proteolytic cleavage of soluble TNFR1 ectodomains. We propose that calcium-dependent NUCB2.ARTS-1 complexes, which associate with TNFR1 prior to its commitment to pathways that result in either the constitutive release of TNFR1 exosome-like vesicles or the inducible proteolytic cleavage of TNFR1 ectodomains, play an important role in mediating TNFR1 release to the extracellular compartment.  相似文献   

13.
ADAM-17 is a metalloprotease-disintegrin responsible for the ectodomain shedding of several transmembrane proteins. Using the yeast two-hybrid system, we showed that ADAM-17 interacts with the Four and Half LIM domain 2 protein (FHL2), a LIM domain protein that is involved in multiple protein-protein interaction. We demonstrated that this interaction involved the amino-acid sequence of ADAM-17 from position 721 to739. In the cardiomyoblast cells H9C2, ADAM-17 and FHL2 colocalize with the actin-based cytoskeleton and we showed that FHL2 binds both ADAM-17 and the actin-based cytoskeleton. We found that mainly the mature form of ADAM-17 associates with the cytoskeleton, although the maturation of ADAM-17 by furin is not necessary for its binding to the cytoskeleton. Interestingly, less ADAM-17 was detected at the surface of wild-type mouse macrophages compared to FHL2 deficient macrophages. However, wild-type cells have a higher ability to release ADAM-17 substrates under PMA stimulation. Altogether, these results demonstrate a physical and functional interaction between ADAM-17 and FHL2 that implies that FHL2 has a role in the regulation of ADAM-17.  相似文献   

14.
The extracellular domains of many proteins, including growth factors, cytokines, receptors, and adhesion molecules, are proteolytically released from cells, a process termed "shedding." Tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17) is a metalloprotease-disintegrin that sheds tumor necrosis factor-alpha and other proteins. To study the regulation of TACE-mediated shedding, we examined the effects of stimulation of cells on TACE localization and expression. Immunofluorescence microscopy revealed a punctate distribution of TACE on the surface of untreated cells, and stimulation of monocytic cells with lipopolysaccharide did not affect TACE staining. Phorbol 12-myristate 13-acetate (PMA), a potent inducer of shedding, decreased cell-surface staining for TACE. Surface biotinylation experiments confirmed and extended this observation; PMA decreased the half-life of surface-biotinylated TACE without increasing the turnover of total cell-surface proteins. Soluble fragments of TACE were not detected in the medium of cells that had down-regulated TACE, and TACE was not down-regulated when endocytosis was inhibited. Antibody uptake experiments suggested that cell-surface TACE was internalized in response to PMA. Surprisingly, a metalloprotease inhibitor prevented the PMA-induced turnover of TACE. Thus, PMA activates shedding and causes the down-regulation of a major "sheddase," suggesting that induced shedding may be regulated by a mechanism that decreases the amount of active TACE on the cell surface.  相似文献   

15.
TNF alpha converting enzyme (TACE) processes precursor TNF alpha between Ala76 and Val77, yielding a correctly processed bioactive 17 kDa protein. Genetic evidence indicates that TACE may also be involved in the shedding of other ectodomains. Here we show that native and recombinant forms of TACE efficiently processed a synthetic substrate corresponding to the TNF alpha cleavage site only. For all other substrates, conversion occurred only at high enzyme concentrations and prolonged reaction times. Often, cleavage under those conditions was accompanied by nonspecific reactions. We also compared TNF alpha cleavage by TACE to cleavage by those members of the matrix metalloproteinase (MMP) family previously implied in TNF alpha release. The specificity constants for TNF alpha cleavage by the MMPs were approximately 100-1000-fold slower relative to TACE. MMP 7 also processed precursor TNF alpha at the correct cleavage site but did so with a 30-fold lower specificity constant relative to TACE. In contrast, MMP 1 processed precursor TNF alpha between Ala74 and Gln75, in addition to between Ala76 and Val77, while MMP 9 cleaved this natural substrate solely between Ala74 and Gln75. Additionally, the MMP substrate Dnp-PChaGC(Me)HK(NMA)-NH(2) was not cleaved at all by TACE, while collagenase (MMP 1), gelatinase (MMP 9), stromelysin 1 (MMP 3), and matrilysin (MMP 7) all processed this substrate efficiently. All of these results indicate that TACE is unique in terms of its specificity requirements for substrate cleavage.  相似文献   

16.
The transmembrane domain of TACE regulates protein ectodomain shedding   总被引:1,自引:0,他引:1  
Li X  Pérez L  Pan Z  Fan H 《Cell research》2007,17(12):985-998
Numerous membrane proteins are cleaved by tumor necrosis factor-α converting enzyme (TACE), which causes the release of their ectodomains. An ADAM (a disintegrin and metalloprotease domain) family member, TACE contains several noncatalytic domains whose roles in ectodomain shedding have yet to be fully resolved. Here, we have explored the function of the transmembrane domain (TM) of TACE by coupling molecular engineering and functional analysis. A TM-free TACE construct that is anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI)-binding polypeptide failed to restore shedding of transforming growth factor-or (TGF-α), tumor necrosis factor-α (TNF-α) and L-selectin in cells lacking endogenous TACE activity. Substitution of the TACE TM with that of the prolactin receptor or platelet-derived growth factor receptor (PDGFR) also resulted in severe loss of TGF-α shedding, but had no effects on the cleavage of TNF-α and L-selectin. Replacement of the TM in TGF-α with that of L-selectin enabled TGF-α shedding by the TACE mutants carrying the TM of prolactin receptor and PDGFR. Taken together, our observations suggest that anchorage of TACE to the lipid bilayer through a TM is required for efficient cleavage of a broad spectrum of substrates, and that the amino-acid sequence of TACE TM may play a role in regulatory specificity among TACE substrates.  相似文献   

17.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

18.
TNF, an important mediator of inflammatory and innate immune responses, can be regulated by binding to soluble TNF receptors. The 55-kDa type 1 TNFR (TNFR1), the key receptor for TNF signaling, is released to the extracellular space by two mechanisms, the inducible cleavage and shedding of 34-kDa soluble TNFR1 (sTNFR1) ectodomains and the constitutive release of full-length 55-kDa TNFR1 within exosome-like vesicles. The aim of this study was to identify and characterize TLR signaling pathways that mediate TNFR1 release to the extracellular space. To our knowledge, we demonstrate for the first time that polyinosinic-polycytidylic acid [poly (I:C)], a synthetic dsRNA analogue that signals via TLR3, induces sTNFR1 shedding from human airway epithelial (NCI-H292) cells, whereas ligands for other microbial pattern recognition receptors, including TLR4, TLR7, and nucleotide-binding oligomerization domain containing 2, do not. Furthermore, poly (I:C) selectively induces the cleavage of 34-kDa sTNFR1 ectodomains but does not enhance the release of full-length 55-kDa TNFR1 within exosome-like vesicles. RNA interference experiments demonstrated that poly (I:C)-induced sTNFR1 shedding is mediated via activation of TLR3-TRIF-RIP1 signaling, with subsequent activation of two downstream pathways. One pathway involves the dual oxidase 2-mediated generation of reactive oxygen species, and the other pathway is via the caspase-mediated activation of apoptosis. Thus, the ability of dsRNA to induce the cleavage and shedding of the 34-kDa sTNFR1 from human bronchial epithelial cells represents a novel mechanism by which innate immune responses to viral infections are modulated.  相似文献   

19.
Among the many adhesins and toxins expressed by Staphylococcus aureus, protein A is an exceptionally complex virulence factor, known to interact with multiple eukaryotic targets, particularly those with immunological functions. Protein A acts as a ligand that can mimic TNF-alpha to activate TNFR1 and subsequent proinflammatory signaling. It also stimulates the cleavage of TNFR1 from the surface of epithelial cells and macrophages, which serves to limit TNF-alpha signaling. We characterized the signaling pathway responsible for TNFR1 shedding and identified protein A mutants which could activate TNFR1-dependent signaling, but were unable to activate TACE, the TNFR1 sheddase. Activation of TACE was dependent upon a discrete interaction between the previously defined IgG-binding domain of protein A and the epidermal growth factor receptor (EGFR), which in turn induced TACE phosphorylation through a c-Src-erk1/2-mediated cascade. This novel interaction was independent of the autocrine activation of EGFR and protein A-induced TGF-alpha was neither required nor sufficient to activate TNFR1 shedding. Thus, staphylococci exploit the ubiquitous and multifunctional EGFR to regulate the availability of TNFR1 on mucosal and immune cells.  相似文献   

20.
Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号