首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymic utilization of cytidine diphosphoethanolamine in the synthesis of phosphatidylethanolamine is localized in the microsomal fraction of spinach (Spinacia oleracea) leaves. The metal ion requirement can be satisfied by Mn(2+) (saturation approximately 0.6 mm) or Mg(2+) (saturation approximately 25 mm). The enzyme has a pH optimum of 8.0 in the presence of Mn(2+) and 7.5 in the presence of Mg(2+). A Michaelis constant of 20 mum was determined for cytidinediphos-phoethanolamine. Enzyme activity was stimulated by thiol compounds and inhibited by thiol reagents. No inhibition was obtained with cytidine monophosphate and Tween 80.The in vitro biosynthesis of phosphatidylethanolamine was inhibited by cytidine diphosphocholine and the biosynthesis of phosphatidylcholine was inhibited by cytidine diphosphoethanolamine. Activities of the two synthetic systems were indistinguishable on the basis of susceptibility to lyophilization and inhibition by thiol reagents.  相似文献   

2.
Choline accumulation and phosphatidylcholine biosynthesis were investigated in the choline-requiring anaerobic protozoon Entodinium caudatum by incubating whole cells or subcellular fractions with [14C] choline, phosphoryl [14C] choline and CDP-[14C] choline. 2. All membrane fractions contained choline kinase (EC 2.7.1.32) and CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2), although the specific activities were less in the cell-envelope fraction. Choline phosphate cytidylyltransferase (EC 2.7.7.15) was limited to the supernatant, and this enzyme was rate-limiting for phosphatidylcholine synthesis in the whole cell. 3. Synthesis of phosphatidylcholine from free choline by membranes was only possible in the presence of supernatant. Such reconstituted systems required ATP (2.5 mM), CTP (1 mM) and Mg2+ (5 mM) for maximum synthesis of the phospholipid. CTP and Mg2+ were absolute requirements. 4. Hemicholinium-3 prevented choline uptake by the cells and was strongly inhibitory towards choline kinase; the other enzymes involved in phosphatidylcholine synthesis were minimally affected. 5. Ca2+ ions (0.5 mM) substantially inhibited CDP-choline-1,2-diacylglycerol cholinephosphotransferase in the presence of 15 mM-Mg2+, but choline phosphate cytidylyltransferase and choline kinase were less affected. 6. No free choline could be detected intact cells even after short (10-180s) incubations or at temperatures down to 10 degrees C. The [14C] choline entering was mainly present as phosphorylcholine and to a lesser extent as phosphatidylcholine. 7. It is suggested that choline kinase effectively traps any choline within the cell, thus ensuring a supply of the base for future growth. At low choline concentrations the activity of choline kinase is rate-limiting for choline uptake, and the enzyme might possibly play an active role in the transport phenomenon. Thus the choline uptake by intact cells and choline kinase have similar Km values and show similar responses to temperature and hemicholinium-3.  相似文献   

3.
Control of fatty acid distribution in phosphatidylcholine of spinach leaves   总被引:2,自引:0,他引:2  
The acylation of lysophosphatidylcholine by enzyme preparations from spinach leaves was studied. The acylation reaction was followed by the incorporation of (14)C-labeled fatty acids from the respective coenzyme A derivatives into phosphatidylcholine. The subcellular fraction with the highest specific activity was the microsomal fraction. Contaminating thioesterase activity which was encountered was inhibited by treatment with sodium dodecyl sulfate. The acyltransferase activity was only mildly inhibited by sulfhydryl reagents. Labeled fatty acid was primarily incorporated into phosphatidylcholine. When saturated and unsaturated fatty acyl CoA derivatives were used, the saturated derivatives were incorporated primarily into the 1-position of the glycerol moiety, and the unsaturated fatty acids went primarily to the 2-position. This pattern of incorporation agrees with the fatty acid distribution in vivo.  相似文献   

4.
Biosynthetic pathways of phosphatidylcholine and triglyceride were studied in proliferating hepatic endoplasmic reticulum of rats pretreated with phenobarbital. Phosphatidylcholine accounted for the major increment in membrane phospholipid. In vitro measurements of hepatic microsomal enzymes which catalyze phosphatidylcholine biosynthesis revealed a significant increase in specific activity of the enzyme governing phosphatidylcholine synthesis by sequential methylation of phosphatidylethanolamine. The specific activity of phosphorylcholine-glyceride transferase, which catalyzes phosphatidylcholine synthesis from d-1,2-diglyceride and CDP-choline, was not altered. Specific activity of diglyceride acyltransferase, which catalyzes triglyceride biosynthesis, was increased to a degree comparable to the increase in specific activity found in the phenobarbital-induced drug-metabolizing enzyme which oxidatively demethylates aminopyrine. In vivo incorporation of methyl-(3)H from l-methionine-methyl-(3)H into microsomal phosphatidylcholine was significantly increased, resulting in an increased methyl-(3)H to choline-1,2-(14)C incorporation ratio of more than three times that found in control animals. A comparable increase in this incorporation ratio was noted in serum phospholipids. The in vitro enzyme studies, in agreement with in vivo incorporation data, indicate that the increase in phosphatidylcholine content of phenobarbital-induced proliferating endoplasmic reticulum is related to increased activity of the pathway of phosphatidylcholine biosynthesis involving the sequential methylation of phosphatidylethanolamine.  相似文献   

5.
Cytidine-diphospho-choline diacyl-glycerol phosphorylcholine phosphotransferase activity was demonstrated in potato (Solanum tuberosum L.) microsomes and the incorporation of cytidine-diphospho[14C]choline into phosphatidylcholine was characterized by the time course of 14C incorporation and the effect of microsomal protein concentration on choline incorporation.

Potato microsomes were progressively delipidated by treatments (2 min at 0°C) with increasing amounts of phospholipase C from Bacillus cereus. A decrease in choline phosphotransferase activity was observed in parallel with the progressive hydrolysis of membrane phospholipids. A 70% (or more) phospholipid hydrolysis provoked the total inactivation of the enzyme.

Adding back exogenous phospholipids (in the form of liposomes) to phospholipase C-treated membranes restored the enzymic activity. Restoration could be obtained with egg yolk phospholipids as well as with potato phospholipids. Restoration was time dependent and completed after 10 minutes; restoration was also dependent on the quantity of liposomes added to lipid-depleted membranes: the best restorations were obtained with 1 to 2.5 milligrams of phospholipid per mg of microsomal protein; higher phospholipid to protein ratios were less efficient or inhibitory.

These results clearly demonstrate the phospholipid dependence of the cytidine-diphospho-choline phosphotransferase from potato microsomes.

  相似文献   

6.
The enzymatic pathways for formation of 1,2-diradylglyceride in response to epidermal growth factor in human dermal fibroblasts have been investigated. 1,2-Diradylglyceride mass was elevated 2-fold within one minute of addition of EGF. Maximal accumulation (4-fold) occurred at 5 minutes. Since both diacyl and ether-linked diglyceride species occur naturally and may accumulate following agonist activation, we developed a novel method to determine separately the alterations in diacyl and ether-linked diglycerides following stimulation of fibroblasts with EGF. Utilizing this method, it was found that approximately 80% of the total cellular 1,2-diradylglyceride was diacyl, the remaining 20% being ether-linked. Addition of EGF caused accumulation of 1,2-diacylglyceride without alteration in the level of ether-linked diglyceride. Thus, the observed induction of 1,2-diradylglyceride by EGF was due exclusively to increased formation of 1,2-diacylglyceride. In cells labelled with [3H]choline, the water soluble phosphatidylcholine hydrolysis products, phosphorylcholine and choline, were increased 2-fold within 5 minutes of addition of EGF. No hydrolysis of phosphatidylethanolamine, phosphatidylserine, or phosphatidylinositol was observed. Quantitation by radiolabel and mass revealed equivalent elevations in phosphorylcholine and choline, suggesting stimulation of both phospholipase C and phospholipase D activities. To identify the presence of EGF-induced phospholipase D activity, cells were labelled with exogenous [3H]1-0-hexadecyl, 2-acyl phosphatidylcholine and its conversion to phosphatidic acid in response to EGF determined. Radiolabelled phosphatidic acid was detectable in 15 seconds after addition of EGF and was maximal (3-fold) at 30 seconds. Consistent with the presence of EGF-induced phospholipase D activity, treatment of cells with EGF, in the presence of [14C]ethanol, resulted in the rapid formation of [14C]phosphatidylethanol, the product of phospholipase D-catalyzed transphosphatidylation. The formation of phosphatidylethanol, which competes for the formation of phosphatidic acid by phospholipase D, did not diminish the induction of 1,2-diglyceride by EGF. These data suggest that the phosphatidic acid formed by phospholipase D-catalyzed hydrolysis of phosphatidylcholine is not a major precursor of the observed increased 1,2-diglyceride. Thus, the induction of 1,2-diacylglycerol by EGF may occur primarily via phospholipase C-catalyzed hydrolysis of phosphatidylcholine.  相似文献   

7.
The effect of norepinephrine on phosphatidylcholine and phosphatidylethanolamine formation was investigated in short-term incubations with freshly isolated rat hepatocytes. In the presence of dl-propranolol, norepinephrine decreases the incorporation of [methyl-14C]choline into phosphatidylcholines in a dose-dependent manner. At a concentration of 50 microM, norepinephrine (plus 20 microM propranolol) inhibits the incorporation of [methyl-14C]choline over a wide range of choline concentrations (59% inhibition at 5 microM choline; 34% inhibition at 1 mM choline). Norepinephrine also decreases the incorporation rates of [1-14C]palmitic acid and [1-14C]oleic acid into phosphatidylcholines. The effect of norepinephrine is mediated through an alpha-adrenergic receptor. Norepinephrine (plus propranolol) does not decrease the uptake or phosphorylation rate of [methyl-14C]choline. Pulse-label and pulse-chase studies indicate that the conversion rate of phosphocholine to CDP-choline, catalyzed by CTP:phosphocholine cytidylyltransferase, is diminished by norepinephrine. In contrast with the inhibitory effect of norepinephrine on phosphatidylcholine synthesis, this hormone stimulates the formation of phosphatidylethanolamines from [1,2-14C]ethanolamine. This increased incorporation rate is apparent at ethanolamine concentrations above 25 microM. A combination of norepinephrine and propranolol decreases, however, the synthesis of phosphatidylcholines from [1,2-14C]ethanolamine. The results indicate that alpha-adrenergic regulation dissociates the synthesis of phosphatidylcholines from that of phosphatidylethanolamines.  相似文献   

8.
Phosphorylcholine-1,2-(14)C and choline-1,2-(14)C-labeled cytidine diphosphate choline are incorporated into lecithin by whole homogenates and particulate fractions of rat retina with optimal incorporation of label by the microsomal fraction. The soluble fraction contains a factor(s) which stimulates incorporation of label with release of inorganic phosphate. Mg(++) is required for optimal incorporation of intermediates into lecithin in the presence of added diglycerides; without added diglycerides, incorporation of phosphorylcholine or cytidine diphosphate choline was moderately stimulated by preincubating the system in the absence of Mg(++) with added phosphatidic acid and by adding this mixture to fresh enzyme and the complete incubation mixture (including Mg(++)). The results show that the retina is capable of de novo synthesis of phosphatides and suggest that the rod outer segments depend on the pigment epithelium and(or) the inner rod segments for a source of phospholipids. Coenzyme A and ATP added to whole homogenate of retina did not significantly increase the incorporation of CDP-choline-1,2-(14)C into lecithin but slightly increased the radioactivity found in lysolecithin and sphingomyelin. Rats with hereditary retinitis pigmentosa have an abnormally high lipid phosphorus content of the retina, but they do not incorporate labeled CDP-choline into lecithin of retina at a higher rate than do normal animals.  相似文献   

9.
The effect of choline deficiency on the de novo pathway for phosphatidylcholine (PC) synthesis in the lung was investigated in rats fed a washed soy protein (lipotrophic) diet deficient in choline and methionine for 2-3 wk. Lungs from lipotrophic rats showed a decreased content of choline and choline-phosphate (P less than 0.05) compared with control but no change in content of cytidine 5'-diphosphocholine or PC. Isolated perfused lungs from lipotrophic rats were evaluated for choline and fatty acid utilization for PC synthesis. Lipotrophic lungs perfused with 5 microM [14C-methyl]-choline chloride showed increased incorporation into PC while there was no significant effect at saturating levels of choline (100 microM). There was increased incorporation of [1-14C]-palmitic acid into PC and diglyceride and increased incorporation of D-[U-14C]glucose into fatty acids of PC. Increased choline and glucose incorporation was not due to alteration of intracellular specific activity of these substrates. This study indicates the utilization of choline and fatty acid for PC synthesis is stimulated as a result of choline deficiency while lung CDP-choline concentration is maintained, possibly through regulation of choline phosphate cytidyl transferase activity. These mechanisms compensate for decreased choline availability to maintain the PC content of lungs.  相似文献   

10.
Ethanolamine phosphotransferase (EC 2.7.8.1) and choline phosphotransferase (EC 2.7.8.2) activities were assayed in fresh microsomes from adult chicken brains with either diacylglycerols or alkylacylglycerols. Pretreatment of microsomes with 1.25 mM sodium deoxycholate, a concentration less than the critical micelle concentration, produced a slight inhibition of choline phosphotransferase activity. A deoxycholate concentration (5.0 mM) greater than the critical micelle concentration (3.0 mM) decreased the choline phosphotransferase activity by more than 70% but had no effect on ethanolamine phosphotransferase activity. Inclusion of 1.25 mM deoxycholate in the assay medium decreased choline phosphotransferase activity 35% but increased ethanolamine phosphotransferase activity 50%. The deoxycholate appeared to inactive the choline phosphotransferase. Phospholipase A2 (Vipera russelli) treatments of microsomes removed phosphoglycerides and decreased both phosphotransferase activities to a similar extent. Decreased activities are probably due to disruption of the membrane structure. Choline and ethanolamine phosphotransferase activities are apparently in different enzymes which lack specificity for the type of diglyceride. Thus, the systematic names should include 1,2-diradyl-sn-glycerol instead of 1,2-diacyl-sn-glycerol.  相似文献   

11.
《Phytochemistry》1987,26(11):2923-2927
The action of boron on phospholipid composition and synthesis in roots and microsomes from sunflower seedlings has been studied. The fatty acid composition and relative amounts of individual molecular species of phospholipids in roots and microsomes were very similar. In both the content of phospholipids was decreased and the relative levels of their component fatty acids changed by treatment with 50 ppm of boron. This concentration of boron in the culture medium was found to inhibit the in vivo [1-14C] acetate incorporation into root lipids and that of [Me-14C] choline into phosphatidylcholine of root microsomes. Cytidine-5-diphospho (CDP)-[Me-14C] choline incorporation into phosphatidylcholine of isolated microsomes was also inhibited by 50 ppm of boron when present in the growth medium of seedlings. These results indicate that the decrease in phosphatidylcholine labelling from [14C] choline observed when root microsomes were treated with boron would be caused by a decrease in CDP-choline phosphotransferase activity.  相似文献   

12.
Base exchange reactions of the phospholipids in rat brain particles   总被引:13,自引:0,他引:13  
A particulate fraction from rat brain catalyzes the incorporation of [(14)C]choline, [(14)C]ethanolamine, and l-[(14)C]serine into phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, respectively. The reaction appears to be energy-independent since Mg(2+), CTP, ATP, and NaF have no stimulatory action. The incorporation is inhibited by EDTA and activated by Ca(2+). The pH optimum for the incorporation of choline is 9.5, for ethanolamine it is 9.0, and for l-serine it is 8.5. Tris, bicine, and imidazole buffers are inhibitory. The incorporations are inhibited by a variety of structurally related alcohols and are stimulated by isoserine (alpha-hydroxy,beta-aminopropionic acid).  相似文献   

13.
The mercuric reductase from Yersinia enterocolitica 138A14 was inactivated by the arginine modifying reagents 2,3-butanedione and phenylglyoxal. The inactivation by 2,3-butanedione exhibited second order kinetics with rate constant of 32 min-1 M-1. In the case of phenylglyoxal, biphasic kinetics were observed. The oxidized coenzyme (NADP+) prevented inactivation of the enzyme by the alpha-dicarbonyl reagents, whereas the reduced coenzyme (NADPH) enhanced the inactivation rate. The loss of enzyme activity was related to the incorporation of [2-14C] phenylglyoxal; when two arginines per subunit were modified the enzyme was completely inactivated.  相似文献   

14.
Once brain ischemia was induced in the gerbil cerebral fronto-parietal cortex, serial changes occurred in energy metabolites and various lipids. The amounts of inositol-containing phospholipids began to decrease immediately after energy failure, followed by an increase in the amount of 1,2-diacylglycerol with a subsequent liberation of arachidonic acid and other free fatty acids. The fatty acid compositions of inositol-containing phospholipids, of 1,2-diacylglycerols produced by ischemia, and of free fatty acids liberated during ischemia were quite similar. The amount of stearic acid liberated was much larger than that of arachidonic acid between 30 s and 1 min of ischemia. On the other hand, there was no significant decrease in the amount of the other phospholipids except for phosphatidic acid. Furthermore, there was also no change in the fatty acid composition of phosphatidylcholine or phosphatidylethanolamine throughout 15 min of ischemia. The amount of cytidine-monophosphate reached a peak (36.7 nmol/g wet wt) at 2 min of ischemia. These results indicated that arachidonic acid was predominantly liberated from inositol-containing phospholipids by phospholipase C, and by the diglyceride lipase and monoglyceride lipase system rather than from phosphatidylcholine or phosphatidylethanolamine by phospholipase A2 or plasmalogenase or choline phosphotransferase during the early period of ischemia.  相似文献   

15.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

16.
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [(32)P]PP(i)-ATP exchange. The enzyme was separated from Mg(2+)-requiring alkaline pyrophosphatase (which interferes with the PP(i)-ATP-exchange assay) and from other PP(i)-ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PP(i)-ATP exchange; K(m) (sulphate) was 3.1mm, K(m) (ATP) was 0.35mm and the pH optimum was 7.5-9.0. The enzyme was insensitive to thiol-group reagents and required either Mg(2+) or Co(2+) for activity. 3. The enzyme catalysed [(32)P]PP(i)-dATP exchange; K(m) (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [(32)P]PP(i)-ATP exchange and competed with sulphate; K(m) (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PP(i)-ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5'-[(35)S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg(2+)-dependent alkaline pyrophosphatase (also prepared from spinach) with [(35)S]sulphate and ATP as substrates; adenosine 5'-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.  相似文献   

17.
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.  相似文献   

18.
The relative contributions of the two pathways of phosphatidylcholine biosynthesis, phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17) and diacylglycerol: CDP-choline cholinephosphotransferase (EC 2.7.8.1), are altered in the ciliate protozoan Tetrahymena thermophila whose phospholipid composition has been modified by culturing the organism in the presence of one of several aminophosphonic acids, as determined by measuring the incorporation of [methyl-3H]choline and [methyl-14C]methionine into phosphatidylcholine in vivo. In control cells the phosphotransferase pathway provides about 40% of the phosphatidylcholine, while in cells grown with 2-aminoethylphosphonate (AEP), 3-aminopropylphosphonate (APP), and N,N,N-trimethylaminoethyl-phosphonate (TMAEP) the contribution of the phosphotransferase pathway to phosphatidylcholine formation is 75, 90, and 26%, respectively. In AEP- and APP-grown cells, in which 80% of the phosphatidylethanolamine has been replaced by the corresponding phosphonolipid, the methyltransferase is less active since the level of the substrate phosphatidylethanolamine is reduced and neither of the phosphonolipids is a substrate for the enzyme. In TMAEP-grown cells, TMAEP competes with and reduces the incorporation of phosphocholine by the phosphotransferase pathway, leading to a smaller contribution of the pathway to phosphatidylcholine biosynthesis. The relative amounts of the two different radioactive labels incorporated into diacylphosphatidylcholine vs alkylacylphosphatidylcholine are also altered in the phosphonate-grown cells. The exogenous AEP induces a change in the glyceryl ether content of the 2-aminoethylphosphonolipid--33% in the AEP-grown cells compared to 70% in the control cells--indicating that the exogenous AEP is entering the phospholipids by the ethanolamine-phosphotransferase pathway rather than by the route of the endogenous AEP.  相似文献   

19.
To produce a severe choline-methionine deficiency, a synthetic L-amino acid diet, free of choline, methionine, vitamin B12, and folic acid and supplemented with guanidoacetic acid, a methyl group acceptor, was fed to female rats for 2 weeks. The in vitro activity of liver microsomal phosphatidylethanolamine methyltransferase was stimulated twofold when compared with basal diet controls. The activity of choline phosphotransferase was depressed by 86%; thus, the contribution of the methyltransferase in the overall synthesis of phosphatidylcholine apparently increased. However, measurement of the in vivo methylation of phosphatidylethanolamine by incorporation of [1,2-14C]ethanolamine into phosphatidylcholine indicates that the methylation pathway is markedly depressed in methyl deficiency. Hepatic concentrations of the methyltransferase substrate, S-adenosylmethionine, and the inhibitory metabolite, S-adenosylhomocysteine, were significantly altered such that an unfavorable environment for methylation was present in the deficient animal. The ratio of substrate to inhibitor was depressed from 5.2:1 in the controls to 1.7:1 in the livers of methyl-depleted rats. Control of transmethylation in accordance with the availability of substrates, phosphatidylethanolamine, or S-adenosylmethionine, and the level of S-adenosylhomocysteine is discussed.  相似文献   

20.
Choline kinase catalyzes the phosphorylation of choline by ATP, the first committed step in the CDP-choline pathway for phosphatidylcholine biosynthesis. To begin to elucidate the mechanism of catalysis by this enzyme, choline kinase A-2 from Caenorhabditis elegans was analyzed by systematic mutagenesis of highly conserved residues followed by analysis of kinetic and structural parameters. Specifically, mutants were analyzed with respect to K(m) and k(cat) values for each substrate and Mg(2+), inhibitory constants for Mg(2+) and Ca(2+), secondary structure as monitored by circular dichroism, and sensitivity to unfolding in guanidinium hydrochloride. The most severe impairment of catalysis occurred with the modification of Asp-255 and Asn-260, which are located in the conserved Brenner's phosphotransferase motif, and Asp-301 and Glu-303, in the signature choline kinase motif. For example, mutation of Asp-255 or Asp-301 to Ala eliminated detectable catalytic activity, and mutation of Asn-260 and Glu-303 to Ala decreased k(cat) by 300- and 10-fold, respectively. Additionally, the K(m) for Mg(2+) for mutants N260A and E303A was approximately 30-fold higher than that of wild type. Several other residues (Ser-86, Arg-111, Glu-125, and Trp-387) were identified as being important: Catalytic efficiencies (k(cat)/K(m)) for the enzymes in which these residues were mutated to Ala were reduced to 2-25% of wild type. The high degree of structural similarity among choline kinase A-2, aminoglycoside phosphotransferases, and protein kinases, together with the results from this mutational analysis, indicates it is likely that these conserved residues are located at the catalytic core of choline kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号