首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Campylobacter jejuni, a major food‐borne intestinal pathogen, preferentially utilizes a few specific amino acids and some organic acids such as pyruvate and l ‐ and d ‐lactate as carbon sources, which may be important for growth in the avian and mammalian gut. Here, we identify the enzymatic basis for C. jejuni growth on l ‐lactate. Despite the presence of an annotated gene for a fermentative lactate dehydrogenase (cj1167), no evidence for lactate excretion could be obtained in C. jejuni NCTC 11168, and inactivation of the cj1167 gene did not affect growth on lactate as carbon source. Instead, l ‐lactate utilization in C. jejuni NCTC 11168 was found to proceed via two novel NAD‐independent l ‐LDHs; a non‐flavin iron–sulfur containing three subunit membrane‐associated enzyme (Cj0075c‐73c), and a flavin and iron–sulfur containing membrane‐associated oxidoreductase (Cj1585c). Both enzymes contribute to growth on l ‐lactate, as single mutants in each system grew as well as wild‐type on this substrate, while a cj0075c cj1585c double mutant showed no l ‐lactate oxidase activity and did not utilize or grow on l ‐lactate; d ‐lactate‐dependent growth was unaffected. Orthologues of Cj0075c‐73c (LldEFG/LutABC) and Cj1585c (Dld‐II) were recently shown to represent two novel families of l ‐ and d ‐lactate oxidases; this is the first report of a bacterium where both enzymes are involved in l ‐lactate utilization only. The cj0075c‐73c genes are located directly downstream of a putative lactate transporter gene (cj0076c, lctP), which was also shown to be specific for l ‐lactate. The avian and mammalian gut environment contains dense populations of obligate anaerobes that excrete lactate; our data indicate that C. jejuni is well equipped to use l ‐ and d ‐lactate as both electron‐donor and carbon source.  相似文献   

3.
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome‐sequenced strains and is prevalent in livestock‐associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild‐type and the fucP mutant are chemotactic towards fucose. C. jejuni 81‐176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81‐176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc‐). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.  相似文献   

4.
5.
Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81‐176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW‐passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81‐176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168‐GS) was also identified. The PG muropeptide profile of 11168‐GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168‐O). Introduction of wild type pgp1 into 11168‐GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell‐to‐cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub‐optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.  相似文献   

6.
The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram‐negative and Gram‐positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell‐to‐cell junction factors including E‐cadherin, occludin, and claudin‐8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development.  相似文献   

7.
Adherence of Campylobacter jejuni to its particular host cells is mediated by several pathogen proteins. We screened a transposon-based mutant library of C. jejuni in order to identify clones with an invasion deficient phenotype towards Caco2 cells and detected a mutant with the transposon insertion in gene cj0268c. In vitro characterization of a generated non-random mutant, the mutant complemented with an intact copy of cj0268c and parental strain NCTC 11168 confirmed the relevance of Cj0268c in the invasion process, in particular regarding adherence to host cells. Whereas Cj0268c does not impact autoagglutination or motility of C. jejuni, heterologous expression in E. coli strain DH5α enhanced the potential of the complemented E. coli strain to adhere to Caco2 cells significantly and, thus, indicates that Cj0268c does not need to interact with other C. jejuni proteins to develop its adherence-mediating phenotype. Flow cytometric measurements of E. coli expressing Cj0268c indicate a localization of the protein in the periplasmic space with no access of its C-terminus to the bacterial surface. Since a respective knockout mutant possesses clearly reduced resistance to Triton X-100 treatment, Cj0268c contributes to the stability of the bacterial cell wall. Finally, we could show that the presence of cj0268c seems to be ubiquitous in isolates of C. jejuni and does not correlate with specific clonal groups regarding pathogenicity or pathogen metabolism.  相似文献   

8.
The cj0183 and cj0588 genes identified in the Campylobacter jejuni NCTC 11168 genome encode proteins with amino acid sequences predicted to be homologous to other bacterial hemolysins. The Cj0183 protein exhibits homology to Brachyspira hyodysenteriae TlyC protein, whereas the cj0588 gene product is homologous to TlyA proteins Brachyspira hyodysenteriae, Helicobacter pylori, and Mycobacterium tuberculosis, which play a crucial role in bacterial virulence. The aim of our work was to examine the hemolytic activity and determine the role of cj0183- and cj0588-encoded proteins on the adherence of chosen C. jejuni strains to the Caco-2 cell line by constructing deletion mutants in the mentioned genes. We found out there is no difference in hemolytic activity between both mutants in gene cj0183 and cj0588 and the wild strains. However, Cj0588 protein but not Cj0183 is involved in adherence to the Caco-2 cells.  相似文献   

9.
Mammalian and prokaryotic high‐temperature requirement A (HtrA) proteins are chaperones and serine proteases with important roles in protein quality control. Here, we describe an entirely new function of HtrA and identify it as a new secreted virulence factor from Helicobacter pylori, which cleaves the ectodomain of the cell‐adhesion protein E‐cadherin. E‐cadherin shedding disrupts epithelial barrier functions allowing H. pylori designed to access the intercellular space. We then designed a small‐molecule inhibitor that efficiently blocks HtrA activity, E‐cadherin cleavage and intercellular entry of H. pylori.  相似文献   

10.
HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen Helicobacter pylori, HtrA is secreted where it cleaves the tumour‐suppressor E‐cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H. pylori isolates in gastric biopsy material from infected patients. Differential RNA‐sequencing (dRNA‐seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H. pylori, but not other bacteria. We show that Helicobacter htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti‐bacterial therapy.  相似文献   

11.
PA3535 (EprS), an autotransporter (AT) protein of Pseudomonas aeruginosa, is predicted to contain a serine protease motif. The eprS encodes a 104.5 kDa protein with a 30‐amino‐acid‐long signal peptide, a 51.2 kDa amino‐terminal secreted passenger domain and a 50.1 kDa carboxyl‐terminal outer membrane channel formed translocator. Although the majority of AT proteins have been reported to be virulence factors, little is known about the functions of EprS in the pathogenicity of P. aeruginosa. In this study, we performed functional analyses of recombinant EprS secreted by Escherichia coli. The proteolytic activity of EprS was markedly decreased by changing Ser to Ala at position 308 or by serine protease inhibitors. EprS preferred to cleave substrates that terminated with arginine or lysine residues. Thus, these results indicate that EprS, a serine protease, displays the substrate specificity, cleaving after basic residues. We demonstrated that EprS activates NF‐κB‐driven promoters through protease‐activated receptor (PAR)‐1, ‐2 or ‐4 and induces IL‐8 production through PAR‐2 in a human bronchiole epithelial cell line. Moreover, EprS cleaved the peptides corresponding to the tethered ligand region of PAR‐1, ‐2 and ‐4 at a specific site with exposure oftheir tethered ligands. Collectively, these results suggest that EprS activates host inflammatory responses through PARs.  相似文献   

12.
The mechanisms used by Campylobacter jejuni to colonize the (chicken) intestinal tract have not been defined. In this study, we obtained evidence that in the presence of chicken serum and mucus, C. jejuni secreted proteins that may play a role in the colonization of chicken gut (Campylobacter invasion antigen = Cia). C. jejuni strains NCTC11168V1 and 81-176, as well as an NCTC11168V1 flaA mutant, were found to colonize intestinal tract and secrete proteins in the presence of chicken mucus, chicken serum, or fetal bovine serum in cell culture–conditioned medium. C. jejuni strain NCTC11168V26, which was observed to be a poor colonizer compared with the other C. jejuni isolates, did not secrete Cia proteins. Secreted proteins were also recognized by Western immunoblot using sera from birds that had been colonized by C. jejuni. These data suggest that C. jejuni secretes Cia proteins during colonization of chicken gut and that these Cia proteins play an important role in colonization.  相似文献   

13.
Campylobacter jejuni is a highly motile bacterium that responds via chemotaxis to environmental stimuli to migrate towards favourable conditions. Previous in silico analysis of the C. jejuni strain NCTC11168 genome sequence identified 10 open reading frames, tlp1‐10, that encode putative chemosensory receptors. We describe the characterization of the role and specificity of the Tlp1 chemoreceptor (Cj1506c). In vitro and in vivo models were used to determine if Tlp1 had a role in host colonization. The tlp1 isogenic mutant was more adherent in cell culture, however, showed reduced colonization ability in chickens. Specific interactions between the purified sensory domain of Tlp1 and l ‐aspartate were identified using an amino acid array and saturation transfer difference nuclear magnetic resonance spectroscopy. Chemotaxis assays showed differences between migration of wild‐type C. jejuni cells and that of a tlp1 isogenic mutant, specifically towards aspartate. Furthermore, using yeast two‐hybrid and three‐hybrid systems for analysis of protein–protein interactions, the cytoplasmic signalling domain of Tlp1 was found to preferentially interact with CheV, rather than the CheW homologue of the chemotaxis signalling pathway; this interaction was confirmed using immune precipitation assays. This is the first identification of an aspartate receptor in bacteria other than Escherichia coli and Salmonella enterica serovar Typhimurium.  相似文献   

14.
Antimicrobial peptides (AMPs) are important components of the innate immune system. Enterohaemorrhagic Escherichia coli (EHEC), a food‐borne pathogen causing serious diarrheal diseases, must overcome attack by AMPs. Here, we show that resistance of EHEC against human cathelicidin LL‐37, a primary AMP, was enhanced by butyrate, which has been shown to act as a stimulant for the expression of virulence genes. The increase of resistance depended on the activation of the ompT gene, which encodes the outer membrane protease OmpT for LL‐37. The expression of the ompT gene was enhanced through the activation system for virulence genes. The increase in ompT expression did not result in an increase in OmpT protease in bacteria but in enhancement of the production of OmpT‐loaded outer membrane vesicles (OMVs), which primarily contributed to the increase in LL‐37‐resistance. Furthermore, a sublethal dosage of LL‐37 stimulated the production of OMVs. Finally, we showed that OMVs produced by OmpT‐positive strains protect the OmpT‐negative strain, which is susceptible to LL‐37 by itself more efficiently than OMVs from the ompT mutant. These results indicate that EHEC enhances the secretion of OmpT‐loaded OMVs in coordination with the activation of virulence genes during infection and blocks bacterial cell attack by LL‐37.  相似文献   

15.
Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL‐33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL‐33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide‐Binding Oligomerisation Domain‐Containing Protein 1 (NOD1) and its adaptor protein receptor‐interacting serine–threonine Kinase 2, to promote production of both full‐length and processed IL‐33 in gastric epithelial cells. Furthermore, IL‐33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1+/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL‐33 and splenic IL‐13 responses, but decreased IFN‐γ responses, when compared with Nod1?/? animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL‐33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation.  相似文献   

16.
Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β‐sandwich architecture. The structure suggests that Cj0090 may be involved in protein‐protein interactions, consistent with a possible role for bacterial lipoproteins. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The microaerophilic food‐borne pathogen Campylobacter jejuni uses complex cytochrome‐rich respiratory chains for growth and host colonisation. Cytochrome c biogenesis requires haem ligation to reduced apocytochrome cysteines, catalysed by the cytochrome c synthase, CcsBA. While ccsBA could not be deleted, we showed that the thiol reductase DsbD and the CcsX homologue Cj1207 are involved in, but not essential for, cytochromes c biogenesis. Mutant phenotypic analyses and biochemical studies with purified proteins revealed that the mono‐haem c‐type cytochromes Cj1153 (CccA) and Cj1020 (CccB) and the di‐haem Cj0037 (CccC) are electron donors to the cb‐oxidase (CcoNOQP), with CccC being more efficient than CccA. Remarkably, cccA deletion or site‐directed mutagenesis resulted in an almost complete loss of all other c‐type cytochromes. Cytochrome c structural and biogenesis genes were still transcribed in the cccA deletion mutant and the quinol oxidase genes (cioAB) were up‐regulated. Cytochrome c production could be rescued in this mutant by growth with exogenous dithiothreitol or L‐cysteine, suggesting that in the absence of CccA, apocytochrome c haem binding motifs become oxidised, preventing haem attachment. Our results identify CccA, the most abundant periplasmic c‐type cytochrome in C. jejuni, as a novel and unexpected protein required for cytochrome c biogenesis in this pathogen.  相似文献   

18.
19.
20.
Campylobacter jejuni is a predominant cause of food-borne bacterial gastroenteritis in the developed world. We have investigated the importance of a homologue of the periplasmic HtrA protease in C. jejuni stress tolerance. A C. jejuni htrA mutant was constructed and compared to the parental strain, and we found that growth of the mutant was severely impaired both at 44°C and in the presence of the tRNA analogue puromycin. Under both conditions, the level of misfolded protein is known to increase, and we propose that the heat-sensitive phenotype of the htrA mutant is caused by an accumulation of misfolded protein in the periplasm. Interestingly, we observed that the level of the molecular chaperones DnaK and ClpB was increased in the htrA mutant, suggesting that accumulation of nonnative proteins in the periplasm induces the expression of cytoplasmic chaperones. While lack of HtrA reduces the oxygen tolerance of C. jejuni, the htrA mutant was not sensitive to compounds that increase the formation of oxygen radicals, such as paraquat, cumene hydroperoxide, and H2O2. Using tissue cultures of human epithelial cells (INT407), we found that the htrA mutant adhered to and invaded human epithelial cells with a decreased frequency compared to the wild-type strain. This defect may be a consequence of the observed altered morphology of the htrA mutant. Thus, our results suggest that in C. jejuni, HtrA is important for growth during stressful conditions and has an impact on virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号