首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CRISPR‐Cas     
The prokaryotic immune system: CRISPR‐Cas The struggle of survival between prokaryotes and their viruses is likely one of the oldest conflicts on earth. Prokaryotes have developed different defense strategies to fend off an infection by the ubiquitous viruses that outnumber prokaryotes by an estimated factor of 10. Viruses, in turn, exhibit several counter mechanisms to overcome the prokaryotic defense. The recently discovered CRISPR‐Cas‐system represents a remarkable example for the continuous arms race between prokaryotes and viruses. Originally discovered in prokaryotes, the CRISPR‐Cas‐mediated defense constitutes an adaptive and heritable immune system against viruses and plasmids.  相似文献   

2.
3.
4.
5.
CRISPR‐Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR‐Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I‐E CRISPR4‐Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR‐Cas systems are required for spacer acquisition. The St4 CRISPR‐Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2‐DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3′‐overhangs (protospacers) in vitro. We further show that the DnaQ domain of Cas2 functions as a 3′–5′‐exonuclease that processes 3′‐overhangs of the protospacer to promote integration.  相似文献   

6.
Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus‐infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time‐consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat‐Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene‐ablated HSV but also gene knock‐in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein–Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.  相似文献   

7.
8.
9.
Protozoan pathogens that cause leishmaniasis in humans are relatively refractory to genetic manipulation. In this work, we implemented the CRISPR‐Cas9 system in Leishmania parasites and demonstrated its efficient use for genome editing. The Cas9 endonuclease was expressed under the control of the Dihydrofolate Reductase‐Thymidylate Synthase (DHFR‐TS) promoter and the single guide RNA was produced under the control of the U6snRNA promoter and terminator. As a proof of concept, we chose to knockout a tandemly repeated gene family, the paraflagellar rod‐2 locus. We were able to obtain null mutants in a single round of transfection. In addition, we confirmed the absence of off‐target editions by whole genome sequencing of two independent clones. Our work demonstrates that CRISPR‐Cas9‐mediated gene knockout represents a major improvement in comparison with existing methods. Beyond gene knockout, this genome editing tool opens avenues for a multitude of functional studies to speed up research on leishmaniasis.  相似文献   

10.
11.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

12.
Targeting the MAPK signaling pathway has transformed the treatment of metastatic melanoma. CRISPR‐Cas9 genetic screens provide a genome‐wide approach to uncover novel genetic dependencies that might serve as therapeutic targets. Here, we analyzed recently reported CRISPR‐Cas9 screens comparing data from 28 melanoma cell lines and 313 cell lines of other tumor types in order to identify fitness genes related to melanoma. We found an average of 1,494 fitness genes in each melanoma cell line. We identified 33 genes, inactivation of which specifically reduced the fitness of melanoma. This set of tumor type‐specific genes includes established melanoma fitness genes as well as many genes that have not previously been associated with melanoma growth. Several genes encode proteins that can be targeted using available inhibitors. We verified that genetic inactivation of DUSP4 and PPP2R2A reduces the proliferation of melanoma cells. DUSP4 encodes an inhibitor of ERK, suggesting that further activation of MAPK signaling activity through its loss is selectively deleterious to melanoma cells. Collectively, these data present a resource of genetic dependencies in melanoma that may be explored as potential therapeutic targets.  相似文献   

13.
14.
Cas9 is an RNA-guided endonuclease in the bacterial CRISPR–Cas immune system and a popular tool for genome editing. The commonly used Streptococcus pyogenes Cas9 (SpCas9) is relatively non-specific and prone to off-target genome editing. Other Cas9 orthologs and engineered variants of SpCas9 have been reported to be more specific. However, previous studies have focused on specificity of double-strand break (DSB) or indel formation, potentially overlooking alternative cleavage activities of these Cas9 variants. In this study, we employed in vitro cleavage assays of target libraries coupled with high-throughput sequencing to systematically compare cleavage activities and specificities of two natural Cas9 variants (SpCas9 and Staphylococcus aureus Cas9) and three engineered SpCas9 variants (SpCas9 HF1, HypaCas9 and HiFi Cas9). We observed that all Cas9s tested could cleave target sequences with up to five mismatches. However, the rate of cleavage of both on-target and off-target sequences varied based on target sequence and Cas9 variant. In addition, SaCas9 and engineered SpCas9 variants nick targets with multiple mismatches but have a defect in generating a DSB, while SpCas9 creates DSBs at these targets. Overall, these differences in cleavage rates and DSB formation may contribute to varied specificities observed in genome editing studies.  相似文献   

15.
16.
The CRISPR‐associated protein Cas9 is widely used for genome editing because it cleaves target DNA through the assistance of a single‐guide RNA (sgRNA). Structural studies have revealed the multi‐domain architecture of Cas9 and suggested sequential domain movements of Cas9 upon binding to the sgRNA and the target DNA. These studies also hinted at the flexibility between domains; however, it remains unclear whether these flexible movements occur in solution. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single‐molecule FRET. We found that the flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal structures. Importantly, the HNH nuclease domain only accessed the DNA cleavage position during such flexible movements, suggesting the importance of this flexibility in the DNA cleavage process. Our FRET data also revealed the conformational flexibility of apo‐Cas9, which may play a role in the assembly with the sgRNA. Collectively, our results highlight the potential role of domain fluctuations in driving Cas9‐catalyzed DNA cleavage.  相似文献   

17.
The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR‐Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR‐Cas9 as a mutant screening tool. Here, we report a pooled CRISPR‐Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR‐Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1‐1/1‐2/1‐3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.  相似文献   

18.
We report the first application of CRISPR‐Cas technology to single species detection from environmental DNA (eDNA). Organisms shed and excrete DNA into their environment such as in skin cells and faeces, referred to as environmental DNA (eDNA). Utilising eDNA allows noninvasive monitoring with increased specificity and sensitivity. Current methods primarily employ PCR‐based techniques to detect a given species from eDNA samples, posing a logistical challenge for on‐site monitoring and potential adaptation to biosensor devices. We have developed an alternative method; coupling isothermal amplification to a CRISPR‐Cas12a detection system. This utilises the collateral cleavage activity of Cas12a, a ribonuclease guided by a highly specific single CRISPR RNA. We used the target species Salmo salar as a proof‐of‐concept test of the specificity of the assay among closely related species and to show the assay is successful at a single temperature of 37°C with signal detection at 535 nM. The specific assay, detects at attomolar sensitivity with rapid detection rates (<2.5 hr). This approach simplifies the challenge of building a biosensor device for rapid target species detection in the field and can be easily adapted to detect any species from eDNA samples from a variety of sources enhancing the capabilities of eDNA as a tool for monitoring biodiversity.  相似文献   

19.
The Streptococcus‐derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single‐guide RNA (sgRNA) for target DNA recognition and the CRISPR‐associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ‐line‐specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ‐line‐specific promoters (pDD45‐GT and pLAT52‐GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.  相似文献   

20.
The Type II CRISPR‐Cas9 system is a simple, efficient, and versatile tool for targeted genome editing in a wide range of organisms and cell types. It continues to gain more scientific interest and has established itself as an extremely powerful technology within our synthetic biology toolkit. It works upon a targeted site and generates a double strand breaks that become repaired by either the NHEJ or the HDR pathway, modifying or permanently replacing the genomic target sequences of interest. These can include viral targets, single‐mutation genetic diseases, and multiple‐site corrections for wide scale disease states, offering the potential to manage and cure some of mankind's most persistent biomedical menaces. Here, we present the developing progress and future potential of CRISPR‐Cas9 in biological and biomedical investigations, toward numerous therapeutic, biomedical, and biotechnological applications, as well as some of the challenges within. J. Cell. Biochem. 119: 81–94, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号