首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Acanthamoeba spp. are single-celled protozoan organisms that are widely distributed in the environment. In this study, to understand functional roles of a mannose-binding protein (MBP), Acanthamoeba castellanii was treated with methyl-alpha-D-mannopyranoside (mannose), and adhesion and cytotoxicity of the amoeba were analyzed. In addition, to understand the association of MBP for amoeba phagocytosis, phagocytosis assay was analyzed using non-pathogenic bacterium, Escherichia coli K12. Amoebae treated with mannose for 20 cycles exhibited larger vacuoles occupying the most area of the amoebic cytoplasm in comparison with the control group amoebae and glucose-treated amoebae. Mannose-selected amoebae exhibited lower levels of binding to Chinese hamster ovary (CHO) cells. Exogenous mannose inhibited >50% inhibition of amoebae (control group) binding to CHO cells. Moreover, exogenous mannose inhibited amoebae (i.e., man-treated) binding to CHO cells by <15%. Mannose-selected amoebae exhibited significantly decreased cytotoxicity to CHO cells compared with the control group amoebae, 25.1% vs 92.1%. In phagocytic assay, mannose-selected amoebae exhibited significant decreases in bacterial uptake in comparison with the control group, 0.019% vs 0.03% (P<0.05). Taken together, it is suggested that mannose-selected A. castellanii trophozoites should be severely damaged and do not well interact with a target cell via a lectin of MBP.  相似文献   

2.
This study investigates whether the B chain of β‐bungarotoxin exerted antibacterial activity against Escherichia coli (Gram‐negative bacteria) and Staphylococcus aureus (Gram‐positive bacteria) via its membrane‐damaging activity. The B chain exhibited a growth inhibition effect on E. coli but did not show a bactericidal effect on S. aureus. The B‐chain bactericidal action on E. coli positively correlated with an increase in membrane permeability in the bacterial cells. Lipopolysaccharide (LPS) layer destabilization and lipoteichoic acid (LTA) biosynthesis inhibition in the cell wall increased the B‐chain bactericidal effect on E. coli and S. aureus. The B chain induced leakage and fusion in E. coli and S. aureus membrane‐mimicking liposomes. Compared with LPS, LTA notably suppressed the membrane‐damaging activity and fusogenicity of the B chain. The B chain showed similar binding affinity with LPS and LTA, whereas LPS and LTA binding differently induced B‐chain conformational change as evidenced by the circular dichroism spectra. Taken together, our data indicate that the antibacterial action of the B chain is related to its ability to induce membrane permeability and suggest that the LPS‐induced and LTA‐induced B‐chain conformational change differently affects the bactericidal action of the B chain. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta‐) genomic analyses discovered an abundance of genes encoding for eukaryotic‐like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria–eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR‐SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria–sponge interactions.  相似文献   

4.
Bacterial carbohydrate structures play a central role in mediating a variety of host–pathogen interactions. Glycans can either elicit protective immune response or lead to escape of immune surveillance by mimicking host structures. Lipopolysaccharide (LPS), a major component on the surface of Gram‐negative bacteria, is composed of a lipid A‐core and the O‐antigen polysaccharide. Pathogens like Neisseria meningitidis expose a lipooligosaccharide (LOS), which outermost glycans mimick mammalian epitopes to avoid immune recognition. Lewis X (Galβ1–4(Fucα1–3)GlcNAc) antigens of Helicobacter pylori or of the helminth Schistosoma mansoni modulate the immune response by interacting with receptors on human dendritic cells. In a glycoengineering approach we generate human carbohydrate structures on the surface of recombinant Gram‐negative bacteria, such as Escherichia coli and Salmonella enterica sv. Typhimurium that lack O‐antigen. A ubiquitous building block in mammalian N‐linked protein glycans is Galβ1‐4GlcNAc, referred to as a type‐2 N‐acetyllactosamine, LacNAc, sequence. Strains displaying polymeric LacNAc were generated by introducing a combination of glycosyltransferases that act on modified lipid A‐cores, resulting in efficient expression of the carbohydrate epitope on bacterial cell surfaces. The poly‐LacNAc scaffold was used as an acceptor for fucosylation leading to polymers of Lewis X antigens. We analysed the distribution of the carbohydrate epitopes by FACS, microscopy and ELISA and confirmed engineered LOS containing LacNAc and Lewis X repeats by MALDI‐TOF and NMR analysis. Glycoengineered LOS induced pro‐inflammatory response in murine dendritic cells. These bacterial strains can thus serve as tools to analyse the role of defined carbohydrate structures in different biological processes.  相似文献   

5.
Escherichia coli has been the leading model organism for many decades. It is a fundamental player in modern biology, facilitating the molecular biology revolution of the last century. The acceptance of E. coli as model organism is predicated primarily on the study of one E. coli lineage; E. coli K‐12. However, the antecedents of today's laboratory strains have undergone extensive mutagenesis to create genetically tractable offspring but which resulted in loss of several genetic traits such as O antigen expression. Here we have repaired the wbbL locus, restoring the ability of E. coli K‐12 strain MG1655 to express the O antigen. We demonstrate that O antigen production results in drastic alterations of many phenotypes and the density of the O antigen is critical for the observed phenotypes. Importantly, O antigen production enables laboratory strains of E. coli to enter the gut of the Caenorhabditis elegans worm and to kill C. elegans at rates similar to pathogenic bacterial species. We demonstrate C. elegans killing is a feature of other commensal E. coli. We show killing is associated with bacterial resistance to mechanical shear and persistence in the C. elegans gut. These results suggest C. elegans is not an effective model of human‐pathogenic E. coli infectious disease.  相似文献   

6.
Acanthamoeba castellanii is a single-celled protozoan that is widely distributed in the environment and is a well-known of causing human keratitis, a vision-threatening infection. In this study, an ethyl methane sulfonate (EMS) and a selection of saccharide were applied to A. castellanii by chemical mutagenesis. To understand the functional roles of a mannose-binding protein (MBP). A. castellanii were treated with methyl-alpha-d-mannopyranoside abbreviated Man, with and without the EMS pre-treatment, and their adhesion and cytotoxicity were analyzed, using a human brain microvascular endothelial cell (HBMEC) as the target cell. Both EMS and Man mutants exhibited significantly decreased levels of MBP expression and cytotoxicity to HBMEC, but showed similar levels of binding to HBMEC, as compared with the wild type. Of interest was that the exogenous mannose inhibited amoebae (i.e., Man mutant) binding to the HBMEC by <20%. Only the mutant Man exhibited a significant decrease in bacterial uptake, as compared to the wild type, 0.020 vs 0.032 (p < 0.05) and proteolytic activity. The results showed that MBP should be clearly provided as the pathogenic target candidate, to further target-based therapy, but EMS mutation should not be associated with initial adhesion and phagocytosis of A. castellanii.  相似文献   

7.
A novel carbohydrate binding site recognizing blood group A and B determinants in a hybrid of cholera toxin and Escherichia coli heat-labile enterotoxin B-subunits (termed LCTBK) has previously been described, and also the native heat-labile enterotoxin bind to some extent to blood group A/B terminated glycoconjugates. The blood group antigen binding site is located at the interface of the B-subunits. Interestingly, the same area of the B-subunits has been proposed to be involved in binding of the heat-labile enterotoxin to lipopolysaccharides on the bacterial cell surface. Binding of the toxin to lipopolysaccharides does not affect the GM1 binding capacity. The present study aimed at characterizing the relationship between the blood group A/B antigen binding site and the lipopolysaccharide binding site. However, no binding of the B-subunits to E. coli lipopolysaccharides in microtiter wells or on thin-layer chromatograms was obtained. Incubation with lipopolysaccharides did not affect the binding of the B-subunits of heat-labile enterotoxin of human isolates to blood group A-carrying glycosphingolipids, indicating that the blood group antigen site is not involved in LPS binding. However, the saccharide competition experiments showed that GM1 binding reduced the affinity for blood group A determinants and vice versa, suggesting that a concurrent occupancy of the two binding sites does not occur. The latter finding is related to a connection between the blood group antigen binding site and the GM1 binding site through residues interacting with both ligands.  相似文献   

8.
The Escherichia coli serotype O9a O‐antigen polysaccharide (O‐PS) is a model for glycan biosynthesis and export by the ATP‐binding cassette transporter‐dependent pathway. The polymannose O9a O‐PS is synthesized as a polyprenol‐linked glycan by mannosyltransferase enzymes located at the cytoplasmic membrane. The chain length of the O9a O‐PS is tightly regulated by the WbdD enzyme. WbdD first phosphorylates the terminal non‐reducing mannose of the O‐PS and then methylates the phosphate, stopping polymerization. The 2.2 Å resolution structure of WbdD reveals a bacterial methyltransferase domain joined to a eukaryotic kinase domain. The kinase domain is again fused to an extended C‐terminal coiled‐coil domain reminiscent of eukaryotic DMPK (Myotonic Dystrophy Protein Kinase) family kinases such as Rho‐associated protein kinase (ROCK). WbdD phosphorylates 2‐α‐d ‐mannosyl‐d ‐mannose (2α‐MB), a short mimic of the O9a polymer. Mutagenesis identifies those residues important in catalysis and substrate recognition and the in vivo phenotypes of these mutants are used to dissect the termination reaction. We have determined the structures of co‐complexes of WbdD with two known eukaryotic protein kinase inhibitors. Although these are potent inhibitors in vitro, they do not show any in vivo activity. The structures reveal new insight into O‐PS chain‐length regulation in this important model system.  相似文献   

9.
In this study, we compared the interactions of invasive and non-invasive strains of E. coli with clinical and environmental isolates of Acanthamoeba. The environmental isolate of Acanthamoeba exhibited significantly higher association with E. coli compared with the clinical isolates of Acanthamoeba. The ratio of E. coli per amoebae was more than 8-fold higher in the environmental isolate compared with the clinical isolates of Acanthamoeba. Interestingly, non-pathogenic environmental Acanthamoeba showed uptake and/or survival of the non-invasive E. coli. In contrast, clinical isolates of Acanthamoeba did not support uptake and/or survival of non-invasive E. coli. Using several mutants derived from K1, we demonstrated that outer membrane protein A (OmpA) and lipopolysaccharide (LPS) are crucial bacterial determinants responsible for E. coli K1 interactions and in the intracellular survival of E. coli in Acanthamoeba. The use of Acanthamoeba as a model to study E. coli K1 pathogenesis and to understand bacterial immune evasion strategies is discussed further.  相似文献   

10.
Waterborne transmission of the oocyst stage of Toxoplasma gondii can cause outbreaks of clinical toxoplasmosis in humans and infection of marine mammals. In water-related environments and soil, free-living amoebae are considered potential carriers of various pathogens, but knowledge on interactions with parasitic protozoa remains elusive. In the present study, we assessed whether the free-living Acanthamoebacastellanii, due to its phagocytic activity, can interact with T. gondii oocysts. We report that amoebae can internalize T. gondii oocysts by active uptake. Intracellular oocysts in amoebae rarely underwent phagocytic lysis, retained viability and established infection in mice. Interaction of T. gondii with amoebae did not reduce the infectivity and pathogenicity of oocysts even after prolonged co-cultivation. Our results show that uptake of oocysts by A. castellanii does not restrain the transmission of T. gondii in a murine infection model.  相似文献   

11.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   

12.
The effects of the soluble forms of the endotoxin receptor molecules sMD‐2 and sCD14 on bacterial growth were studied. When Escherichia coli and Bacillus subtilis were incubated at 37°C for 18 hr with either sMD‐2 or sCD14, growth of these bacteria was significantly inhibited as evaluated by viable cell counts and NADPH/NADH activity. A mutant of sCD14 (sCD14d57‐64) lacking a region essential for LPS binding did not inhibit the growth of E. coli, whereas this mutant did inhibit the growth of B. subtilis. Addition of excess PG to the bacterial culture reversed the inhibitory effect of sMD‐2 on the growth of B. subtilis, but not on the growth of E. coli. Furthermore, when evaluated by ELISA, both sMD‐2 and sCD14 bound specifically to PG. Taken together, these results indicate that sMD‐2 and sCD14 inhibit the growth of both Gram‐positive and Gram‐negative bacteria and further suggest that binding to PG and LPS is involved in the inhibitory effect of sMD‐2 on Gram‐positive bacteria and of sCD14 on Gram‐negative bacteria, respectively.  相似文献   

13.
Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn‐binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn‐binding proteins bind to Fn to form a bridge to α5β1‐integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn‐binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn‐binding proteins have received focus as non‐M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn‐binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates.  相似文献   

14.
Studies of the behavior of Physarum polycephalum amoebae have shown that locomotion of these cells is guided by surfaces composed of aggregated bacteria. Amoebae move readily on both E. coli and agar surfaces. However, when a cell migrating on bacteria encounters an edge of the bacterial surface, the orientation of cell movement changes so that the cell maintains contact with bacteria. Time-lapse cinemicrographic studies employing wild type and mutant cells show that this behavior involves short range interactions between amoebae and bacteria, that it is not dependent on variations in the rate of phagocytosis, and that it is not a simple result of constraints on cell movement imposed by adhesive bonds between amoebae and bacteria. These results provide evidence that guidance of cell locomotion depends on active regulation of the cellular force generating system as the amoebae contact surfaces of varying characteristics and, therefore, suggest that this system is amenable to detailed studies of process involved both in cell-cell recognition and in linking such recognition to regulation of cell movement.  相似文献   

15.
In aquatic environments, Legionella pneumophila survives, in association with other bacteria, within biofilms by multiplying in free-living amoebae. The precise mechanisms underlying several aspects of the uptake and intracellular replication of L. pneumophila in amoebae, especially in the presence of other bacteria, remain unknown. In the present study, we examined the competitive effect of selected non-Legionella bacteria (Escherichia coli, Aeromonas hydrophila, Flavobacterium breve, and Pseudomonas aeruginosa) on the uptake of L. pneumophila serogroup 1 by the amoebae Acanthamoeba castellanii and Naegleria lovaniensis. We also investigated their possible influence on the intracellular replication of L. pneumophila in both amoeba species. Our results showed that the non-Legionella bacteria did not compete with L. pneumophila for uptake, suggesting that the amoeba hosts took in L. pneumophila through a specific and presumably highly efficient uptake mechanism. Living and heat-inactivated P. aeruginosa best supported the replication of L. pneumophila in N. lovaniensis and A. castellanii, respectively, whereas for both amoeba species, E. coli yielded the lowest number of replicated L. pneumophila. Furthermore, microscopic examination showed that 100% of the A. castellanii and only 2% of the N. lovaniensis population were infected with L. pneumophila at the end of the experiment. This study clearly shows the influence of some non-Legionella bacteria on the intracellular replication of L. pneumophila in A. castellanii and N. lovaniensis. It also demonstrates the different abilities of the two tested amoeba species to serve as a proper host for the replication and distribution of the human pathogen in man-made aquatic environments such as cooling towers, shower heads, and air conditioning systems with potential serious consequences for human health.  相似文献   

16.
The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P < 0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts.  相似文献   

17.
18.
We have examined the initial events in phagocytosis by Acanthamoebe castellanii in order to understand this process at the molecular level and have determined that phagocytosis in this organism is mediated by a receptor which recognizes mannose-ricn elements in the particle to be phagocytosed. We demonstrate that the binding and internalization of yeast particles can be inhibited by the sugars D(+)-mannose and D(?)-fructose in a stereospecific, concentration-dependent manner. This inhibition is specific; these sugars did not inhibit the uptake of latex beads by this organism. Using mannosylated neoglycoproteins, which are much more potent inhibitors of particle binding as compared with the free sugar, we demonstrate the presence of a receptor on the amoeba cell surface which is necessary for the binding of yeast as the initial event of phagocytosis. The Acanthamoeba mannose receptor also appears to be able to mediate the delivery of soluble mannose-rich molecules to a degradative compartment such as the lysosome. Knowledge of this receptor will allow a better understanding of the molecular events of phagocytosis.  相似文献   

19.
ClpXP, an AAA+ protease, plays key roles in protein‐quality control and many regulatory processes in bacteria. The N‐terminal domain of the ClpX component of ClpXP is involved in recognition of many protein substrates, either directly or by binding the SspB adaptor protein, which delivers specific classes of substrates for degradation. Despite very limited sequence homology between the E. coli and C. crescentus SspB orthologs, each of these adaptors can deliver substrates to the ClpXP enzyme from the other bacterial species. We show that the ClpX N domain recognizes different sequence determinants in the ClpX‐binding (XB) peptides of C. crescentus SspBα and E. coli SspB. The C. crescentus XB determinants span 10 residues and involve interactions with multiple side chains, whereas the E. coli XB determinants span half as many residues with only a few important side chain contacts. These results demonstrate that the N domain of ClpX functions as a highly versatile platform for peptide recognition, allowing the emergence during evolution of alternative adaptor‐binding specificities. Our results also reveal highly conserved residues in the XB peptides of both E. coli SspB and C. crescentus SspBα that play no detectable role in ClpX‐binding or substrate delivery.  相似文献   

20.
Bacterial pathogens often harbour a type III secretion system (TTSS) that injects effector proteins into eukaryotic cells to manipulate host processes and cause diseases. Identification of host targets of bacterial effectors and revealing their mechanism of actions are crucial for understating bacterial virulence. We show that EspH, a type III effector conserved in enteric bacterial pathogens including enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli and Citrobacter rodentium, markedly disrupts actin cytoskeleton structure and induces cell rounding up when ectopically expressed or delivered into HeLa cells by the bacterial TTSS. EspH inactivates host Rho GTPase signalling pathway at the level of RhoGEF. EspH directly binds the DH‐PH domain in multiple RhoGEFs, which prevents their binding to Rho and thereby inhibits nucleotide exchange‐mediated Rho activation. Consistently, infection of mouse macrophages with EPEC harbouring EspH attenuates phagocytosis of the bacteria as well as FcγR‐mediated phagocytosis. EspH represents the first example of targeting RhoGEFs by bacterial effectors, and our results also reveal an unprecedented mechanism used by enteric pathogens to counteract the host defence system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号