首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to examine miR‐140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR‐140 in host‐bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR‐140 expression and relevant mRNA expression were detected by quantitative real‐time PCR (qRT‐PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR‐140 and the 3′ untranslated region (UTR) of tumour necrosis factor receptor‐associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR‐140 was up‐regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP‐1 and U937 cells with M tb infection. Overexpression of miR‐140 promoted M tb survival; on the other hand, miR‐140 knockdown attenuated M tb survival. The pro‐inflammatory cytokines including interleukin 6, tumour necrosis‐α, interleukin‐1β and interferon‐γ were enhanced by M tb infection in THP‐1 and U937 cells. MiR‐140 overexpression reduced these pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection; while knockdown of miR‐140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR‐140 and was negatively modulated by miR‐140. TRAF6 overexpression increased the pro‐inflammatory cytokines levels and partially restored the suppressive effects of miR‐140 overexpression on pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection. In conclusion, our results implied that miR‐140 promoted M tb survival and reduced the pro‐inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.  相似文献   

2.
3.
Macrophages from mice were infected with Neisseria gonorrhoeae type 1 cells, and their ultrastructure was studied by electron microscopy. The macrophages showed various stages of engulfment and digestion of gonococci 2 hr after infection. Infected macrophages seemed to develop pseudopodia for phagocytosis, and could engulf more than 30 gonococcal cells. Some engulfed bacteria appeared morphologically intact, while others appeared lysed and some structures resembling the L form of N. gonorrhoeae were also seen. These observations suggest that gonococcal cells may be able to survive intracellularly with normal or altered forms of morphology, and that macrophages containing these bacteria may disseminate gonococcal infection in man.  相似文献   

4.
5.
We previously showed that infection of human monocytic U937 cells with nonpathogenic Escherichia coli (E. coli) induced rapid apoptosis in a dose- and time-dependent manner. We also found that E. coli increase p38 mitogen-activated protein Kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), and decrease extracellular-Regulated Kinase1/2 (ERK1/2) phosphorylation and increase caspase-3 and -9 activity in U937 cells. The current study determines if Bcl-2, Bax, the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor kappa B (NF-κB) regulates E. coli–induced U937 cell apoptosis. Studying the underlying mechanisms we found that the E. coli-induced apoptosis in U937 cells was associated with a more prominent reduction in expression of Bcl-2, levels of P-Akt and NF-κB. Because levels of inhibition of apoptosis protein (cIAP), and X-chromosomelinked inhibitor of apoptosis protein (XIAP) are regulated by NF-κB, E. coli decreased the levels of these proteins in U937 cells through inhibition of NF-κB. Moreover, E. coli markedly elevated Bax expression and cytochrome c redistribution. LY294002, PDTC and Embelin, specific inhibitors of PI3K, NF-κB and XIAP, induced U937 cell apoptosis and the apoptosis is dependent on activity of caspase-3 and -9 in E. coli-treated U937 cells. Through using LY294002 and western blotting, we identified NF-κB was the downstream Akt target regulated by E. coli. Taken together, these results clearly indicate reduced activation of NF-κB via impaired PI3K/Akt activation could result in increased apoptosis of U937 cells infected by E. coli. Moreover, E. coli can induce apoptosis with an increased expression of Bax and a reduced expression of Bcl-2, which resulted in increased levels of cytochrome c release and increase caspase-3 and -9 in U937 cells.  相似文献   

6.
Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells.  相似文献   

7.
Monocyte/macrophage cell death is an important event during mycobacterial infection. To get insights about the influence of mononuclear phagocyte maturation in this event we compared the response to Mycobacterium tuberculosis (Mtb) infection of fresh isolated monocytes and monocyte-derived macrophages (MDM) from healthy tuberculin positive individuals. Both monocytes and MDM underwent apoptosis, however, there was a higher numbers of apoptotic macrophages with active Caspases 8 and 9. We also compared Mtb-induced cell death in U937 pro-monocytes and PMA-differentiated cells (U937D). In response to Mtb infection, U937D cells underwent apoptosis and promonocytes both apoptosis and necrosis. There were high number of U937D cells producing TNF-α and high number of IL-10+ promonocytes. These evidences suggest that U937 could be a valid model to study the mechanisms that rule Mtb-induced cell death. Experiments with the cell line and fresh isolated mononuclear cells with pharmacological inhibitors showed that induction of necrosis involved calcium and cAMP signals resulting in IL-10 production. Necrosis also correlated with Caspase 3, PLA2 activity and bacterial growth. In U937D cells and monocytes from healthy donors there was activation of calcium, TNF-α and Caspase 8 activation and decreased bacterial load. Understanding the mechanisms that control the dichotomy events between apoptosis and necrosis/oncosis associated with cell maturity might open new strategies to better control the course of mycobacterial infections.  相似文献   

8.
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on monocyte, we infected human U937 cells with the P. aeruginosa strain in vitro. To explore the expression of Bcl-2 and Bax as well as caspase-3/9 activation in the apoptosis of human U937 cells induced by P. aeruginosa, Hoechst 33258 staining and Giemsa staining as well as Flow cytometry analysis were used to determine the rate of apoptosis, and the expressions of Bcl-2 and Bax were assayed by RT-PCR and Western blotting respectively. Bax protein conformation change was assayed by immunoprecipitation. Cytochrome c release was measured by Western blotting. Moreover, exposure of U937 cells to P. aeruginosa measured caspase-3/9 activity. It was found that the apoptosis of human U937 cells could be induced by Pseudomonas aeruginosa in a dose- and time-dependent manner. Also, there were a tendency of alterations with an increased expression level of Bax and a reduced expression level of Bcl-2, increased levels of cytochrome c release, and also with an increased activation of caspase-3/9 and Bax protein conformation change. For the evaluation of the role of caspases, caspase-3/9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK respectively were used. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked P. aeruginosa-induced U937 apoptosis. It is concluded that P. aeruginosa can induce apoptosis with an up-regulated expression of Bax and a down-regulated expression of Bcl-2, which resulted in increased levels of cytochrome c release and increased caspase-3 and -9 in human U937 cells.  相似文献   

9.
We investigated the interplay occurring between pathogens in the course of dual infections, using an in vitro model in which the THP‐1 monocytic cell line is first infected with HSV‐1 and then exposed to Ca or Cn. These three pathogens share some pathogenic features: they cause opportunistic infections, target macrophages and are neurotropic. Here, we show that HSV‐1‐infected THP‐1 cells exhibited augmented phagocytosis against the two opportunistic fungi but reduced capability to counteract fungal infection: the better ingestion by monocytes was followed by facilitated fungal survival and replication. Reduced IL‐12 production was also observed. Cytofluorimetric analysis showed that HSV‐1‐infected monocytes exhibit: (i) downregulated TLR‐2 and TLR‐4, critical structures in fungal recognition; (ii) reduced expression of CD38 and CD69, known to be important markers of monocyte activation; and (iii) enhanced expression of apoptosis and necrosis markers, in the absence of altered cell proliferation. Overall, these findings imply that HSV‐1 infection prevents monocyte activation, thus leading to a significant dysfunction of the monocyte‐mediated anti‐Candida response; HSV‐1 induced apoptosis and necrosis of monocytes further contribute to this impairment.  相似文献   

10.
Deficiency in neutrophils (neutropenia) caused by mutations in neutrophil elastase (NE, ELA2) has been extensively investigated. Monocytes and neutrophils are derived from a common myeloid progenitor; therefore, ELA2 mutations can also influence monocyte development. These effects have not been well described. In this study, we used the human monocytic THP‐1, to carry the human wild‐type and G185R mutant ELA2 gene. Growth, death, differentiation and BiP expression were evaluated in the two stable cell lines and in the wild‐type THP‐1 cells. Exogenous wild‐type ELA2 markedly increased THP‐1 differentiation, whereas G185R ELA2 was incompetent to promote THP‐1 differentiation in response to all‐trans retinoic acid (ATRA). Indeed, during differentiation induced by ATRA, G185R cell line showed significant cell death. Also, up‐regulated BiP expression accompanied cell death in the G185R cells, suggesting that the overexpression of G185R elastase increases apoptosis through an unfolded protein response. The G185R cells treated with lithium chloride (LiCl; a Wnt signalling activator) displayed higher BiP expression but similar cell viability compared with THP1 and HNEwt/THP1 cells treated with LiCl. This suggested that Wnt signalling might increase cellular tolerance to endoplasmic reticulum stress, enabling mutant monocyte survival. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Getti GT  Cheke RA  Humber DP 《Parasitology》2008,135(12):1391-1399
Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages.  相似文献   

12.
Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.  相似文献   

13.
AA-induced cell death mechanisms acting on human monocytes and monocyte-derived macrophages (MDM), U937 promonocytes and PMA-differentiated U937 cells were studied. Arachidonic acid induced apoptosis and necrosis in monocytes and U937 cells but only apoptosis in MDM and U937D cells. AA increased both types of death in Mycobacterium tuberculosis-infected cells and increased the percentage of TNFα+ cells and reduced IL-10+ cells. Experiments blocking these cytokines indicated that AA-mediated death was TNFα- and IL-10-independent. The differences in AA-mediated cell death could be explained by high ROS, calpain and sPLA-2 production and activity in monocytes. Blocking sPLA-2 in monocytes and treatment with antioxidants favored M. tuberculosis control whereas AA enhanced M. tuberculosis growth in MDM. Such evidence suggested that AA-modulated effector mechanisms depend on mononuclear phagocytes’ differentiation stage.  相似文献   

14.
Ge S  He Q  Granfors K 《PloS one》2012,7(3):e34093

Background

Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells.

Methods/Principal Findings

To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis.

Conclusions

The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis.  相似文献   

15.
Microparticles (MPs) are small membranous particles (100–1000 nm) released under normal steady‐state conditions and are thought to provide a communication network between host cells. Previous studies demonstrated that Mycobacterium tuberculosis (M. tb) infection of macrophages increased the release of MPs, and these MPs induced a proinflammatory response from uninfected macrophages in vitro and in vivo following their transfer into uninfected mice. To determine how M. tb infection modulates the protein composition of the MPs, and if this contributes to their proinflammatory properties, we compared the proteomes of MPs derived from M. tb‐infected (TBinf‐MP) and uninfected human THP‐1 monocytic cells. MP proteins were analyzed by GeLC‐MS/MS with spectral counting revealing 68 proteins with statistically significant differential abundances. The 42 proteins increased in abundance in TBinf‐MPs included proteins associated with immune function (7), lysosomal/endosomal maturation (4), vesicular formation (12), nucleosome proteins (4), and antigen processing (9). Prominent among these were the type I interferon inducible proteins, ISG15, IFIT1, IFIT2, and IFIT3. Exposure of uninfected THP‐1 cells to TBinf‐MPs induced increased gene expression of isg15, ifit1, ifit2, and ifit3 and the release of proinflammatory cytokines. These proteins may regulate the proinflammatory potential of the MPs and provide candidate biomarkers for M. tb infection.  相似文献   

16.
In our search for new small molecules activating procaspase‐3, we have designed and synthesized a series of new acetohydrazides incorporating both 2‐oxoindoline and 4‐oxoquinazoline scaffolds. Biological evaluation showed that a number of these acetohydrazides were comparably or even more cytotoxic against three human cancer cell lines (SW620, colon cancer; PC‐3, prostate cancer; NCI?H23, lung cancer) in comparison to PAC‐1, a first procaspase‐3 activating compound, which was used as a positive control. One of those new compounds, 2‐(6‐chloro‐4‐oxoquinazolin‐3(4H)‐yl)‐N′‐[(3Z)‐5‐methyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene]acetohydrazide activated the caspase‐3 activity in U937 human lymphoma cells by 5‐fold higher than the untreated control. Three of the new compounds significantly induced necrosis and apoptosis in U937 cells.  相似文献   

17.
Liu H  Bao W  Lin M  Niu H  Rikihisa Y 《Cellular microbiology》2012,14(7):1037-1050
Ehrlichia chaffeensis infects monocytes/macrophages and causes human monocytic ehrlichiosis. To determine the role of type IV secretion (T4S) system in infection, candidates for T4S effectors were identified by bacterial two‐hybrid screening of E. chaffeensis hypothetical proteins with positively charged C‐terminus using E. chaffeensis VirD4 as bait. Of three potential T4S effectors, ECH0825 was highly upregulated early during exponential growth in a human monocytic cell line. ECH0825 was translocated from the bacterium into the host‐cell cytoplasm and localized to mitochondria. Delivery of anti‐ECH0825 into infected host cells significantly reduced bacterial infection. Ectopically expressed ECH0825 also localized to mitochondria and inhibited apoptosis of transfected cells in response to etoposide treatment. In double transformed yeast, ECH0825 localized to mitochondria and inhibited human Bax‐induced apoptosis. Mitochondrial manganese superoxide dismutase (MnSOD) was increased over ninefold in E. chaffeensis‐infected cells, and the amount of reactive oxygen species (ROS) in infected cells was significantly lower than that in uninfected cells. Similarly, MnSOD was upregulated and the ROS level was reduced in ECH0825‐transfected cells. These data suggest that, by upregulating MnSOD, ECH0825 prevents ROS‐induced cellular damage and apoptosis to allow intracellular infection. This is the first example of host ROS levels linked to a bacterial T4S effector.  相似文献   

18.
When grown in defined media, 15 of 21 laboratory and clinical strains ofNeisseria gonorrhoeae produced one or more factors (cytotaxins) chemotactic for human polymorphonuclear leukocytes obtained from normal individuals. Production of the cytotaxin(s) depended upon the media in which the bacteria were grown and the growth phase of the cultures, as well as upon the strain of gonococcus.  相似文献   

19.
【背景】鱼类诺卡氏菌病潜伏期和病程较长,感染率和死亡率较高,给水产养殖业带来较大的经济损失,其病原鰤诺卡氏菌(Nocardia seriolae)是胞内寄生菌,侵入细胞后引起慢性感染是主要的致病机制。【目的】构建鰤诺卡氏菌侵染大口黑鲈(Micropterus salmoides)头肾巨噬细胞体外模型,观察鰤诺卡氏菌侵染巨噬细胞的过程并探究鰤诺卡氏菌对巨噬细胞的凋亡作用。【方法】采用密度梯度离心法分离巨噬细胞,通过特异性染色和PCR扩增巨噬细胞表达基因mpeg1对细胞进行鉴定,并通过CCK-8法和氧呼吸暴发活性测定检测巨噬细胞的活性;通过倒置荧光显微镜和流式细胞术观察侵染过程中细菌与细胞的形态与数量变化;通过双荧光流式细胞术检测、乳酸脱氢酶(lactate dehydrogenase, LDH)释放试验及线粒体膜电位检测,探究鰤诺卡氏菌对巨噬细胞的凋亡作用。【结果】从大口黑鲈头肾分离获得纯度高的巨噬细胞,经染色和PCR法鉴定为巨噬细胞;筛选出最优的体外培养条件为1640培养基+1%青霉素链霉素+1%胎牛血清。在脂多糖刺激后,巨噬细胞的氧呼吸暴发能力显著提高(P<0.05)。GFP-鰤诺卡氏菌侵染细胞2 h后细菌被细胞吞噬,4 h细胞变圆且贴壁率降低,6 h细菌大量繁殖并包围细胞,8 h后细胞大量死亡。凋亡相关实验结果表明,侵染初期巨噬细胞凋亡率增加,LDH释放增加,线粒体膜电位下降;随着侵染时间延长,细胞凋亡率下降、LDH释放量及线粒体膜电位下降减少,说明鰤诺卡氏菌对巨噬细胞起先促进后抑制凋亡的作用。【结论】通过密度梯度离心法成功分离大口黑鲈头肾巨噬细胞,并通过鰤诺卡氏菌侵染细胞后初步摸清鰤诺卡细菌在细胞水平的致病机理,建立了鰤诺卡氏菌侵染大口黑鲈头肾巨噬细胞的体外模型;证实了鰤诺卡氏菌可侵染巨噬细胞并抑制细胞凋亡,从而达到在巨噬细胞内存活,为进一步开展鰤诺卡氏菌与巨噬细胞相互作用并阐明鰤诺卡氏菌的致病机制奠定了研究基础。  相似文献   

20.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号