首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef‐building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high‐ and low‐light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross‐paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.  相似文献   

2.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

3.
Vertically transmitted microbes are common in macro‐organisms and can enhance host defense against environmental stress. Because vertical transmission couples host and symbiont lineages, symbionts may become specialized to host species or genotypes. Specialization and contrasting reproductive modes of symbiotic partners could create incompatibilities between inherited symbionts and novel host genotypes when hosts outcross or hybridize. Such incompatibilities could manifest as failed colonization or poor symbiont growth in host offspring that are genetically dissimilar from their maternal host. Moreover, outcrossing between host species could influence both host and symbiont reproductive performance. We tested these hypotheses by manipulating outcrossing between populations and species of two grasses, Elymus virginicus and E. canadensis, that host vertically transmitted fungal endophytes (genus Epichloё). In both greenhouse and field settings, we found that host–symbiont compatibility was robust to variation in host genetic background, spanning within‐population, between‐population and between‐species crosses. Symbiont transmission into the F1 generation was generally high and weakly affected by host outcrossing. Furthermore, endophytes grew equally well in planta regardless of host genetic background and transmitted at high frequencies into the F2 generation. However, outcrossing, especially inter‐specific hybridization, reduced reproductive fitness of the host, and thereby the symbiont. Our results challenge the hypothesis that host genetic recombination, which typically exceeds that of symbionts, is a disruptive force in heritable symbioses. Instead, symbionts may be sufficiently generalized to tolerate ecologically realistic variation in host outcrossing.  相似文献   

4.
Recent studies have shown that symbionts can be a source of adaptive phenotypic variation for their hosts. It is assumed that co‐evolution between hosts and symbionts underlies these ecologically significant phenotypic traits. We tested this assumption in the ectosymbiotic fungal associate of the gall midge Asteromyia carbonifera. Phylogenetic analysis placed the fungal symbiont within a monophyletic clade formed by Botryosphaeria dothidea, a typically free‐living (i.e. not associated with an insect host) plant pathogen. Symbiont isolates from four divergent midge lineages demonstrated none of the patterns common to heritable microbial symbioses, including parallel diversification with their hosts, substitution rate acceleration, or A+T nucleotide bias. Amplified fragment length polymorphism genotyping of the symbiont revealed that within‐lineage genetic diversity was not clustered along host population lines. Culture‐based experiments demonstrated that the symbiont‐mediated variation in gall phenotype is not borne out in the absence of the midge. This study shows that symbionts can be important players in phenotypic variation for their hosts, even in the absence of a co‐evolutionary association.  相似文献   

5.
Range expansion results from complex eco‐evolutionary processes where range dynamics and niche shifts interact in a novel physical space and/or environment, with scale playing a major role. Obligate symbionts (i.e. organisms permanently living on hosts) differ from free‐living organisms in that they depend on strong biotic interactions with their hosts which alter their niche and spatial dynamics. A symbiotic lifestyle modifies organism–environment relationships across levels of organisation, from individuals to geographical ranges. These changes influence how symbionts experience colonisation and, by extension, range expansion. Here, we investigate the potential implications of a symbiotic lifestyle on range expansion capacity. We present a unified conceptual overview on range expansion of symbionts that integrates concepts grounded in niche and metapopulation theories. Overall, we explain how niche‐driven and dispersal‐driven processes govern symbiont range dynamics through their interaction across scales, from host switching to geographical range shifts. First, we describe a background framework for range dynamics based on metapopulation concepts applied to symbiont organisation levels. Then, we integrate metapopulation processes operating in the physical space with niche dynamics grounded in the environmental arena. For this purpose, we provide a definition of the biotope (i.e. living place) specific to symbionts as a hinge concept to link the physical and environmental spaces, wherein the biotope unit is a metapopulation patch (either a host individual or a land fragment). Further, we highlight the dual nature of the symbionts' niche, which is characterised by both host traits and the external environment, and define proper conceptual variants to provide a meaningful unification of niche, biotope and symbiont organisation levels. We also explore variation across systems in the relative relevance of both external environment and host traits to the symbiont's niche and their potential implications on range expansion. We describe in detail the potential mechanisms by which hosts, through their function as biotopes, could influence how some symbionts expand their range – depending on the life history and traits of both associates. From the spatial point of view, hosts can extend symbiont dispersal range via host‐mediated dispersal, although the requirement for among‐host dispersal can challenge symbiont range expansion. From the niche point of view, homeostatic properties of host bodies may allow symbiont populations to become insensitive to off‐host environmental gradients during host‐mediated dispersal. These two potential benefits of the symbiont–host interaction can enhance symbiont range expansion capacity. On the other hand, the central role of hosts governing the symbiont niche makes symbionts strongly dependent on the availability of suitable hosts. Thus, environmental, dispersal and biotic barriers faced by suitable hosts apply also to the symbiont, unless eventual opportunities for host switching allow the symbiont to expand its repertoire of suitable hosts (thus expanding its fundamental niche). Finally, symbionts can also improve their range expansion capacity through their impacts on hosts, via protecting their affiliated hosts from environmental harshness through biotic facilitation.  相似文献   

6.
From extracellular to intracellular: the establishment of a symbiosis.   总被引:4,自引:0,他引:4  
The colonization of host cells by modern symbionts is surveyed. The morphological distinction between extracellular and intracellular symbionts is not sharp, and the various kinds of association can be arranged in a graded series of increasing morphological integration of the symbiont into the host cell. Apart from some aggressive parasitic infections, the great majority of symbionts are enclosed by a host membrane in a vacuole. Those not enclosed in a host vacuole usually cannot be cultivated outside the cell. It is therefore surmised that encirclement by a vacuolar membrane would only disappear, if at all, in the later stages of the evolution of intracellular symbiosis. Recognition mechanisms between host and symbiont occur, but have been little studied. In some associations, recognition at surface contact occurs, and there is evidence for the involvement of lectins in certain cases. In other associations, recognition may occur wholly or in part after the entry of symbiont into host cells. After entry, special mechanisms for the biotrophic transfer of nutrients from symbiont to host develop. Both the symbiont population size and its rate of increase are strictly regulated by the host cell; symbiont metabolism may be controlled likewise. Rates of evolution of intracellular symbionts are probably very rapid, owing in part to responses of the host cell to its symbiont.  相似文献   

7.
Aphids may harbor a wide variety of facultative bacterial endosymbionts. These symbionts are transmitted maternally with high fidelity and they show horizontal transmission as well, albeit at rates too low to enable infectious spread. Such symbionts need to provide a net fitness benefit to their hosts to persist and spread. Several symbionts have achieved this by evolving the ability to protect their hosts against parasitoids. Reviewing empirical work and some models, I explore the evolutionary ecology of symbiont‐conferred resistance to parasitoids in order to understand how defensive symbiont frequencies are maintained at the intermediate levels observed in aphid populations. I further show that defensive symbionts alter the reciprocal selection between aphids and parasitoids by augmenting the heritable variation for resistance, by increasing the genetic specificity of the host–parasitoid interaction, and by inducing environment‐dependent trade‐offs. These effects are conducive to very dynamic, symbiont‐mediated coevolution that is driven by frequency‐dependent selection. Finally I argue that defensive symbionts represent a problem for biological control of pest aphids, and I propose to mitigate this problem by exploiting the parasitoids’ demonstrated ability to rapidly evolve counteradaptations to symbiont‐conferred resistance.  相似文献   

8.
The maternally heritable endosymbiont provides many ecosystem functions. Antibiotic elimination of a specific symbiont and establishment of experimental host lines lacking certain symbionts enable the roles of a given symbiont to be explored. The whitefly Bemisia tabaci (Gennadius) in China harbors obligate symbiont Portiera infecting each individual, as well as facultative symbionts, such as Hamiltonella, Rickettsia and Cardinium, with co‐infections occurring relatively frequently. So far no studies have evaluated the selectivity and efficacy of a specific symbiont elimination using antibiotics in whiteflies co‐infected with different symbionts. Furthermore, no success has been achieved in establishing certain symbiont‐free B. tabaci lines. In this study, we treated Hamiltonella‐infected B. tabaci line, HamiltonellaRickettsia‐co‐infected line and HamiltonellaCardinium co‐infected line by feeding B. tabaci adults with cotton plants cultured in water containing rifampicin, ampicillin or a mixture of them, aiming to selectively curing symbiont infections and establishing stable symbiont‐free lines. We found ampicillin selectively eliminated Cardinium without affecting Portiera, Hamiltonella and Rickettsia, although they coexisted in the same host body. Meanwhile, all of the symbionts considered in our study can be removed by rifampicin. The reduction of facultative symbionts occurred at a much quicker pace than obligate symbiont Portiera during rifampicin treatment. Also, we measured the stability of symbiont elimination in whitefly successive generations and established Rickettsia‐infected and Cardinium‐infected lines which are absent in natural populations. Our results provide new protocols for selective elimination of symbionts co‐existing in a host and establishment of different symbiont‐infected host lines.  相似文献   

9.
Deep‐sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co‐occur at deep‐sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome‐wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep‐sea chemosynthetic environments.  相似文献   

10.
Facultative bacterial endosymbionts can transfer horizontally among lineages of their arthropod hosts, providing the recipient with a suite of traits that can lead to rapid evolutionary response, as has been recently demonstrated. But how common is symbiont‐driven evolution? Evidence suggests that successful symbiont transfers are most likely within a species or among closely related species, although more distant transfers have occurred over evolutionary history. Symbiont‐driven evolution need not be a function of a recent horizontal transfer, however. Many endosymbionts infect only a small proportion of a host population, but could quickly increase in frequency under favorable selection regimes. Some host species appear to accumulate a diversity of facultative endosymbionts, and it is among these species that symbiont‐driven evolution should be most prevalent. It remains to be determined how frequently symbionts enable rapid evolutionary response by their hosts, but substantial ecological effects are a likely consequence whenever it does occur.  相似文献   

11.
In obligate symbioses, the host’s survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.  相似文献   

12.
Understanding the coevolution of hosts and parasites is a long‐standing goal of evolutionary biology. There is a well‐developed theoretical framework to describe the evolution of host–parasite interactions under the assumption of direct, two‐species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host–parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade‐off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three‐species interactions to assess the role of defensive symbionts in host–parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear‐cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont‐conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont‐mediated coevolution between hosts and parasites.  相似文献   

13.
14.
Symbiotic bacteria are highly diverse, play an important role in ecology and evolution, and are also of applied relevance because many pest insects rely on them for their success. However, the dynamics and regulation of symbiotic bacteria within hosts is complex and still poorly understood outside of a few model systems. One of the most intriguing symbiotic relationships is the obligate, tripartite nutritional mutualism in sap‐feeding, economically‐destructive mealybugs (Hemiptera: Sternorrhyncha: Pseudococcidae), which involves γ‐proteobacteria hosted within β‐proteobacteria hosted within the mealybugs. The present study examines whether there is population variation in symbiont density (i.e. infection intensity, or titre) in the citrus mealybug Planococcus citri (Risso) and how this impacts host life‐history. Symbiont density is found to differ significantly between populations when reared under controlled environmental conditions, indicating that the density of symbiont infections is influenced by host or symbiont genotype. However, symbiont density changes in populations over multiple generations, indicating that symbiont densities are dynamic. Surprisingly, given that the symbionts are essential nutritional mutualists, the density of the symbionts does not correlate significantly with either host fecundity or development. Higher levels of symbionts have no clear benefit to hosts and therefore appear to be superfluous, at least under constant, optimized environmental conditions. Excessive symbiont density may be an evolutionary artefact from a period of inefficient vertical transmission when the balance of conflict between host and symbiont was still being established.  相似文献   

15.
The internal transcribed spacer (ITS) region was sequenced in symbiotic dinoflagellates (zooxanthellae) from five morphospecies in the genus Madracis. The phylogeny of the symbionts is congruent with a companion phylogeny of the coral host. Comparison with known clade B symbiont ITS types reveals that M. mirabilis contains the B13 symbiont and that the other morphospecies contain the B7 symbiont. Madracis formosa also contains a previously undescribed type. The B7 and B13 symbionts appear to be highly specific to morphospecies in the genus Madracis. The host specificity between the B13 symbionts and its coral host may be the result of co-evolution of the coral-symbiont association and suggests that the brooding species, M. mirabilis, is reproductively isolated. Microhabitat differentiation associated with light utilization independent of depth is discussed.  相似文献   

16.
Associations between environmentally transmitted symbionts and their hosts provide a unique opportunity to study the evolution of specificity and subsequent radiation of tightly coupled host-symbiont assemblages [3, 8, 24]. The evidence provided here from the environmentally transmitted bacterial symbiont Vibrio fischeri and its sepiolid squid host (Sepiolidae: Euprymna) demonstrates how host-symbiont specificity can still evolve without vertical transmission of the symbiont [1]. Infection by intraspecific V. fischeri symbionts exhibited preferential colonization over interspecific V. fischeri symbionts, indicating a high degree of specificity for the native symbiotic strains. Inoculation with symbiotic bacteria from other taxa (monocentrid fish and loliginid squids) produced little or no colonization in two species of Euprymna, despite their presence in the same or similar habitats as these squids. These findings of host specificity between native Vibrios and sepiolid squids provides evidence that the presence of multiple strains of symbionts does not dictate the composition of bacterial symbionts in the host.  相似文献   

17.
Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan–algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co‐evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan‐algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host‐symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.  相似文献   

18.
Lipids play a key role in thermal and photo-acclimation processes, yet they are often neglected in stress studies. We investigated the influence of different light intensities and an increase of temperature on the fatty acid composition of the coral Montipora digitata and its symbiotic algae (i.e., zooxanthellae). Coral branches were subjected to 3 different light intensities (7, 30 and 95% sea surface photosynthetic active radiation) in filtered seawater for 35 days. Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. Different light intensities, but only in combination with increased temperature, significantly affected the fatty acid composition of the coral host and zooxanthellae. Temperature and light intensity increases caused reductions in the proportion of polyunsaturated fatty acids in both the host and symbionts. Most changes occurred in the host coral, which suggests that the host is more susceptible to environmental change than the symbiont, or that the host shields the symbionts from environmental change.  相似文献   

19.
We investigated the role of carbon dioxide and host temperature in host attraction in frog‐biting midges (Corethrella spp). In these midges, females are known to use frog calls to localize their host, but the role of other host‐emitted cues has yet not been investigated. We hypothesized that carbon dioxide acts as a supplemental cue to frog calls. To test this hypothesis, we determined the responses of the midges to carbon dioxide, frog calls, and both cues. A significantly lower number of midges are attracted to carbon dioxide and silent traps than to traps broadcasting frog calls. Adding carbon dioxide to the calls does not increase the attractiveness to the midges. Instead, carbon dioxide can have deterrent effects on frog‐biting midges. Temperature of calling frogs is not a cue potentially available to the midges. Contrary to our hypothesis, there was no supplemental effect of carbon dioxide when presented in conjunction to calls. Midge host‐seeking behavior strongly depends on the mating calls emitted by their anuran host. Overall, non‐acoustic cues such as host body temperature and carbon dioxide are not important in long‐distance host location by frog‐biting midges.  相似文献   

20.
Many symbioses have costs and benefits to their hosts that vary with the environmental context, which itself may vary in space. The same symbiont may be a mutualist in one location and a parasite in another. Such spatially conditional mutualisms pose a dilemma for hosts, who might evolve (higher or lower) horizontal or vertical transmission to increase their chances of being infected only where the symbiont is beneficial. To determine how transmission in hosts might evolve, we modeled transmission evolution where the symbiont had a spatially conditional effect on either host lifespan or fecundity. We found that over ecological time, symbionts that affected lifespan but not fecundity led to high frequencies of infected hosts in areas where the symbiont was beneficial and low frequencies elsewhere. In response, hosts evolved increased horizontal transmission only when the symbiont affected lifespan. We also modeled transmission evolution in symbionts, which evolved high horizontal and vertical transmission, indicating a possible host–symbiont conflict over transmission mode. Our results suggest an eco‐evolutionary feedback where the component of host fitness affected by a conditionally mutualistic symbiont in turn determines its distribution in the population, and, through this, the transmission mode that evolves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号