首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apicomplexan parasites critically depend on a unique form of gliding motility to colonize their hosts and to invade cells. Gliding requires different stage and species-specific transmembrane adhesins, which interact with an intracellular motor complex shared across parasite stages and species. How gliding is regulated by extracellular factors and intracellular signalling mechanisms is largely unknown, but current evidence suggests an important role for cytosolic calcium as a second messenger. Studying a Plasmodium berghei gene deletion mutant, we here provide evidence that a calcium-dependent protein kinase, CDPK3, has an important function in regulating motility of the ookinete in the mosquito midgut. We show that a cdpk3- parasite clone produces morphologically normal ookinetes, which fail to engage the midgut epithelium, due to a marked reduction in their ability to glide productively, resulting in marked reduction in malaria transmission to the mosquito. The mutant was successfully complemented with an episomally maintained cdpk3 gene, restoring mosquito transmission to wild-type level. cdpk3- ookinetes maintain their full genetic differentiation potential when microinjected into the mosquito haemocoel and cdpk3- sporozoites produced in this way are motile and infectious, suggesting an ookinete-limited essential function for CDPK3.  相似文献   

2.
Successful malaria transmission from the mosquito vector to the mammalian host depends crucially on active sporozoite motility. Sporozoite locomotion and host cell invasion are driven by the parasite's own actin/myosin motor. A unique feature of this motor machinery is the presence of very short subpellicular actin filaments. Therefore, F‐actin stabilizing proteins likely play a central role in parasite locomotion. Here, we investigated the role of the Plasmodium berghei actin capping protein (PbCP), an orthologue of the heterodimeric regulator of filament barbed end growth, by reverse genetics. Parasites containing a deletion of the CP beta‐subunit developed normally during the pathogenic erythrocytic cycle. However, due to reduced ookinete motility, mutant parasites form fewer oocysts and sporozoites in the Anopheles vector. These sporozoites display a vital deficiency in forward gliding motility and fail to colonize the mosquito salivary glands, resulting in complete attenuation of life cycle progression. Together, our results show that the CP beta‐subunit exerts an essential role in the insect vector before malaria transmission to the mammalian host. The vital role is restricted to fast locomotion, as displayed by Plasmodium sporozoites.  相似文献   

3.
Gliding motility and cell traversal by the Plasmodium ookinete and sporozoite invasive stages allow penetration of cellular barriers to establish infection of the mosquito vector and mammalian host, respectively. Motility and traversal are not observed in red cell infectious merozoites, and we have previously classified genes that are expressed in sporozoites but not merozoites (S genes) in order to identify proteins involved in these processes. The S4 gene has been described as criticaly involved in Cell Traversal for Ookinetes and Sporozoites (CelTOS), yet knockout parasites (s4/celtos¯) do not generate robust salivary gland sporozoite numbers, precluding a thorough analysis of S4/CelTOS function during host infection. We show here that a failure of oocysts to develop or survive in the midgut contributes to the poor mosquito infection by Plasmodium yoelii (Py) s4/celtos¯ rodent malaria parasites. We rescued this phenotype by expressing S4/CelTOS under the ookinete‐specific circumsporozoite protein and thrombospondin‐related anonymous protein‐related protein (CTRP) promoter (S4/CelTOSCTRP), generating robust numbers of salivary gland sporozoites lacking S4/CelTOS that were suitable for phenotypic analysis. Py S4/CelTOSCTRP sporozoites showed reduced infectivity in BALB/c mice when compared to wild‐type sporozoites, although they appeared more infectious than sporozoites deficient in the related traversal protein PLP1/SPECT2 (Py plp1/spect2¯). Using in vitro assays, we substantiate the role of S4/CelTOS in sporozoite cell traversal, but also uncover a previously unappreciated role for this protein for sporozoite gliding motility.  相似文献   

4.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

5.
It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites) influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship). We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species.  相似文献   

6.
Alveolins, or inner membrane complex (IMC) proteins, are components of the subpellicular network that forms a structural part of the pellicle of malaria parasites. In Plasmodium berghei, deletions of three alveolins, IMC1a, b, and h, each resulted in reduced mechanical strength and gliding velocity of ookinetes or sporozoites. Using time lapse imaging, we show here that deletion of IMC1h (PBANKA_143660) also has an impact on the directionality and motility behaviour of both ookinetes and sporozoites. Despite their marked motility defects, sporozoites lacking IMC1h were able to invade mosquito salivary glands, allowing us to investigate the role of IMC1h in colonisation of the mammalian host. We show that IMC1h is essential for sporozoites to progress through the dermis in vivo but does not play a significant role in hepatoma cell transmigration and invasion in vitro. Colocalisation of IMC1h with the residual IMC in liver stages was detected up to 30 hours after infection and parasites lacking IMC1h showed developmental defects in vitro and a delayed onset of blood stage infection in vivo. Together, these results suggest that IMC1h is involved in maintaining the cellular architecture which supports normal motility behaviour, access of the sporozoites to the blood stream, and further colonisation of the mammalian host.  相似文献   

7.
Sidén-Kiamos I  Louis C 《Parasitology》2008,135(12):1355-1362
Ookinetes are the motile and invasive stages of Plasmodium parasites in the mosquito host. Here we explore the role of intracellular Ca2+ in ookinete survival and motility as well as in the formation of oocysts in vitro in the rodent malaria parasite Plasmodium berghei. Treatment with the Ca2+ ionophore A23187 induced death of the parasite, an effect that could be prevented if the ookinetes were co-incubated with insect cells before incubation with the ionophore. Treatment with the intracellular calcium chelator BAPTA/AM resulted in increased formation of oocysts in vitro. Calcium imaging in the ookinete using fluorescent calcium indicators revealed that the purified ookinetes have an intracellular calcium concentration in the range of 100 nm. Intracellular calcium levels decreased substantially when the ookinetes were incubated with insect cells and their motility was concomitantly increased. Our results suggest a pleiotropic role for intracellular calcium in the ookinete.  相似文献   

8.
A new view into the life of malaria parasites is now possible owing to recent advances in imaging techniques and to the generation of tagged parasites. Insights into how parasites interact with their insect vectors and mammalian hosts have been gained by the study of various parasitic forms in their natural environment. Quantitative analysis of Plasmodium ookinete motility has revealed different modes of motility in parasite invasion of the mosquito gut and the extrusion of invaded gut cells from the epithelium. Similar analysis with Plasmodium sporozoites has revealed the importance of parasite motility in transmission from the mosquito vector to the mammalian host.  相似文献   

9.
The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3′, 5′-cyclic monophosphate (cGMP) as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase δ (PDEδ), unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase β (GCβ), showing that in ookinetes GCβ is an important source for cGMP, and that PDEδ is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito.  相似文献   

10.
Plasmodium parasites are fertilized in the mosquito midgut and develop into motile zygotes, called ookinetes, which invade the midgut epithelium. Here we show that a calcium-dependent protein kinase, CDPK3, of the rodent malarial parasite (Plasmodium berghei) is produced in the ookinete stage and has a critical role in parasite transmission to the mosquito vector. Targeted disruption of the CDPK3 gene decreased ookinete ability to infect the mosquito midgut by nearly two orders of magnitude. Electron microscopic analyses demonstrated that the disruptant ookinetes could not access midgut epithelial cells by traversing the layer covering the cell surface. An in vitro migration assay showed that these ookinetes lack the ability to migrate through an artificial gel, suggesting that this defect caused their failure to access the epithelium. In vitro migration assays also suggested that this motility is induced in the wild type by mobilization of intracellular stored calcium. These results indicate that a signalling pathway involving calcium and CDPK3 regulates ookinete penetration of the layer covering the midgut epithelium. Because humans do not possess CDPK family proteins, CDPK3 is a good target for blocking malarial transmission to the mosquito vector.  相似文献   

11.
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.  相似文献   

12.
The invasive stages of malaria and other apicomplexan parasites use a unique motility machinery based on actin, myosin and a number of parasite-specific proteins to invade host cells and tissues. The crucial importance of this motility machinery at several stages of the life cycle of these parasites makes the individual components potential drug targets. The different stages of the malaria parasite exhibit strikingly diverse movement patterns, likely reflecting the varied needs to achieve successful invasion. Here, we describe a Tool for Automated Sporozoite Tracking (ToAST) that allows the rapid simultaneous analysis of several hundred motile Plasmodium sporozoites, the stage of the malaria parasite transmitted by the mosquito. ToAST reliably categorizes different modes of sporozoite movement and can be used for both tracking changes in movement patterns and comparing overall movement parameters, such as average speed or the persistence of sporozoites undergoing a certain type of movement. This allows the comparison of potentially small differences between distinct parasite populations and will enable screening of drug libraries to find inhibitors of sporozoite motility. Using ToAST, we find that isolated sporozoites change their movement patterns towards productive motility during the first week after infection of mosquito salivary glands.  相似文献   

13.
Malaria‐causing parasites rely on an actin–myosin‐based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N‐terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent‐infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.  相似文献   

14.
Plasmodium IMC1 (inner membrane complex 1) proteins comprise components of the subpellicular network, a lattice of intermediate filaments that form a structural part of the pellicle in the zoite stages of malaria parasites. Family members IMC1a and IMC1b are differentially expressed in sporozoites and ookinetes, respectively, but have functionally equivalent roles affecting cell morphology, strength, motility, and infectivity. Because of the coincident effects of previous imc1 gene disruptions on both zoite shape and locomotion, it has been impossible to ascribe a direct involvement in motility to these proteins. We show here that a third family member, IMC1h, has a distinct differential expression pattern and localizes to the pellicle of both ookinetes and sporozoites. Knock-out of IMC1h mimics the loss-of-function phenotypes of IMC1a and IMC1b in their respective life stages, indicating that IMC1 proteins could be operating co-dependently. By generating double null mutant parasites for IMC1h and IMC1b, we tested this hypothesis: double knock-out exacerbated the phenotypes of the single knock-outs in terms of ookinete strength, motility, and infectivity but did not further affect ookinete morphology. These findings provide the first genetic evidence that IMC1 proteins can function independently of each other and contribute to gliding motility independently of cell shape.  相似文献   

15.
16.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

17.
The transformation of malaria ookinetes into oocysts occurs in the mosquito midgut and is a major bottleneck for parasite transmission. The secreted ookinete surface protein, circumsporozoite- and thrombospondin-related adhesive protein (TRAP)-related protein (CTRP), is essential for this transition and hence constitutes a potential target for malaria transmission blockade. CTRP is a modular multidomain protein containing six tandem von Willebrand factor A-like (A) domains and seven tandem thrombospondin type I repeat-like (TS) domains. Here we present, to our knowledge, the first structure-function analysis of CTRP using genetically modified Plasmodium berghei parasites expressing mutant versions of the ctrp gene. Our data show that the A domains of CTRP are critical for ookinete gliding motility and oocyst formation whilst, unexpectedly, its TS domains are fully redundant. These results may have important implications for the design of CTRP-based transmission blocking strategies.  相似文献   

18.
Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.  相似文献   

19.
Study of the parasite mosquito stages of Plasmodium and its use in the production of sporozoite vaccines against malaria has been hampered by the technical difficulties of in vitro development. Here, we show the complete axenic development of the parasite mosquito stages of Plasmodium yoelii. While we demonstrate that matrigel is not required for parasite development, soluble factors produced and secreted by Drosophila melanogaster S2 cells appear to be crucial for the ookinete to oocyst transition. Parasites cultured axenically are both morphologically and biologically similar to mosquito-derived ookinetes, oocysts, and sporozoites. Axenically derived sporozoites were capable of producing an infection in mice as determined by RT-PCR; however, the parasitemia was significantly much less than that produced by mosquito-derived sporozoites. Our cell free system for development of the mosquito stages of P. yoelii provides a simplified approach to generate sporozoites that may be for biological assays and genetic manipulations.  相似文献   

20.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号