共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of G proteins and ERK activation in hemin-induced erythroid differentiation of K562 cells 总被引:2,自引:0,他引:2
Heterotrimeric G proteins which couple extracellular signals to intracellular effectors play a central role in cell growth and differentiation. The pluripotent erythroleukemic cell line K562 that acquires the capability to synthesize hemoglobin in response to a variety of agents can be used as a model system for erythroid differentiation. Using Western blot analysis and RT-PCR, we studied alterations in G protein expression accompanying hemin-induced differentiation of K562 cells. We demonstrated the presence of G(alpha s), G(alpha i2) and G(alpha q) and the absence of G(alpha i1), G(alpha o) and G(alpha 16) in K562 cells. We observed the short form of G(alpha s) to be expressed predominantly in these cells. Treatment of K562 cells with hemin resulted in an increase in the levels of G(alpha s) and G(alpha q). On the other hand, the level of G(alpha i2) was found to increase on the third day after induction with hemin, followed by a decrease to levels lower of those of uninduced cells. The mitogen-activated protein kinase ERK1/2 pathway is crucial in the control of cell proliferation and differentiation. Both Gi- and Gq-coupled receptors stimulate MAPK activation. We therefore examined the phosphorylation of ERK1/2 during hemin-induced differentiation of K562 cells. Using anti-ERK1/2 antibodies, we observed that ERK2 was primarily phosphorylated in K562 cells. ERK2 phosphorylation increased gradually until 48 h and returned to basal values by 96 h following hemin treatment. Our results suggest that changes in G protein expression and ERK2 activity are involved in hemin-induced differentiation of K562 cells. 相似文献
2.
3.
Wang D Li H Yuan H Zheng M Bai C Chen L Pei X 《Apoptosis : an international journal on programmed cell death》2005,10(5):963-971
Humanin (HN) is a newly identified neuroprotective peptide. In this study, we investigated its antiapoptotic effect and the potential mechanisms in K562 cells. Upon serum deprivation, expression of HN in K562 cells decreased and its intracellular distribution changed from cytoplasm to cell membrane. In HN stably transfected K562 cells, apoptosis was delayed compared with control vector transfected cells as measured by flow cytometry. Furthermore, analysis of different mitogen-activated protein (MAP) kinases activity revealed that extracellular signal-regulated kinase (ERK) pathway was inhibited while p38 signaling was activated following serum deprivation in K562 cells. And in HN transfected K562 cells, ERK downregulation was not affected, but p38 activation was suppressed, which may responsible for the delayed apoptosis in these cells. Activation of the ERK signaling pathway by phorbol myristate 13-acetate (PMA) and sorbitol protected K562 cells from serum deprivation induced apoptosis. Additionally, overexpression of HN reduced megakaryocytic differentiation of K562 cells. The present data outline the role of ERK and p38 MAP kinases in serum deprivation induced apoptosis in K562 cells and figure out p38 signaling pathway as molecular target for HN delaying apoptosis in K562 cells. 相似文献
4.
The bacterial expression and purification of human pi class glutathione S-transferase (hGST P1-1) as a hexahistidine-tagged polypeptide was performed. The expression plasmid for hGST P1-1 was constructed by ligation of the cDNA which codes for the protein into the expression vector pET-15b. The expressed protein was purified by either glutathione or metal (Co(2+)) affinity column chromatography, which produced the pure and fully active enzyme in one step with a yield of more than 30 mg/liter culture. The activity of the purified protein was 130 units mg(-1) from the GSH affinity column and 112 units mg(-1) from the Co(2+) affinity column chromatography. The purity of the protein was assessed by electrospray ionization mass spectrometry and size-exclusion chromatography. It showed that the real molecular weight of the hexahistidine-tagged hGST P1-1 polypeptide chain agreed with the calculated value and that the purified protein eluted as an apparent homodimer on the gel filtration column. Our expression system allows the expression and purification of active hexahistidine-tagged hGST P1-1 in high yield with no need of removal of the hexahistidine tag and gives pure protein in one purification step allowing further study of this enzyme. 相似文献
5.
目的:通过二烯丙基二硫诱导白血病K562细胞发生自噬性死亡,探讨其作用机制。方法:40 mg/LDADS作用K562细胞12小时后,透射电镜观察K562细胞超微结构,MDC染色荧光显微镜观察自噬泡及流式细胞仪定量检测自噬率,RT-PCR检测Beclin1mRNA的表达水平。结果:DADS作用后的K562细胞后,透射电镜可观察到胞质内出现大量自噬体;MDC染色荧光显微镜观察显示,K562细胞胞浆中的自噬泡明显增多,而空白组与溶媒组胞浆中的自噬泡很少;流式细胞术定量测定空白对照组、溶媒对照组、DADS药物组自噬率分别为(7.27±5.60)%、(7.10±5.13)%、(27.39±6.51)%(P〈0.05);空白对照组为0.658±0.007,溶媒对照组为0.671±0.012,两者的Beclin1mRNA的表达强度无明显差异(P〉0.05),DADS药物组为0.911±0.008,高于对照组(P〈0.05)。结论:二烯丙基二硫可诱导白血病k562细胞发生自噬性死亡,其机制可能与Beclin1的上调有关。 相似文献
6.
Inhibition of signaling through Ras in BCR-ABL-positive pluripotent K562 cells leads to apoptosis and spontaneous differentiation. However, Ras-induced activation of the mitogen-activated protein kinase ERK has been suggested to play a critical role in either growth or differentiation in different model systems. We studied the role of ERK activation in the growth-promoting and anti-apoptotic effect of Ras and its involvement in hemin-induced nonterminal erythroid differentiation using the BCR-ABL-positive K562 cell line as a model. K562 cells were stably transfected with ERK1 or the dominant inhibitory mutant of ERK1 (ERK1-KR). Overexpression of ERK1-KR inhibited cell growth with an approximately fourfold increase in doubling time and induced apoptosis in K562 cells. Incubation with the MEK1 inhibitor UO126 inhibited cell growth and induced apoptosis in K562 cells in a dose-dependent manner as well. In the presence of exogenously added hemin, K562 cells differentiate into erythroblasts, as indicated by the production of large amounts of fetal hemoglobin. We examined the activation of MAP kinases during hemin-induced differentiation. The ERK1 and 2 activity increased within 2 h post hemin treatment and remained elevated for 24-48 h. During this time, fetal hemoglobin synthesis also increases from 0.8 to 10 pg/cell. There was no activation of JNK or p38 protein kinases. The hemin-induced accumulation of hemoglobin was inhibited in ERK1-KR overexpressing cells and was enhanced in the wild-type ERK1 transfectants. Our results suggest that ERK activation is involved in both growth and hemin-induced erythroid differentiation in the BCR-ABL-positive K562 cell line. 相似文献
7.
目的:体外观察树突状细胞(dendritic cell,DC)联合细胞因子诱导的杀伤细胞(cytokine inducedkiller,CIK)对K562/A细胞株多药耐药基因mdr1表达的影响。方法:采集健康人的外周血,分离出单个核细胞(peripheral blood mononuclear cell,PBMC),在体外加入多种细胞因子经诱导生成DC及CIK细胞,以流式细胞仪检测其表面标志,将DC细胞内加入K562/A细胞裂解物致敏后,再与CIK细胞混合培养48小时。将致敏后的DC-CIK细胞与K562/A及K562分组培养后以荧光定量PCR检测其mdr1基因表达的情况,PBMC作为对照组。结果:RT-PCR中可见K562/A+DC-CIK组中mdr1 mRNA表达较K562/A明显降低,经荧光定量PCR观察到K562/A内mdr1 mRNA表达为K562的10.27倍、K562/A/PBMC略低于未处理的K562/A(P〉0.05),K562/A/DC-CIK细胞中mdr1 mRNA含量较K562/A、K562/A/PBMC少(P〈0.05)。DC-CIK细胞与细胞株混合培养后,mdr1基因表达较混合培养前明显降低。结论:实验数据显示DC-CIK可使耐药细胞株内mdr1基因表达下调。但K562与DC-CIK混合培养后该基因降低不明显,提示该基因在细胞中存在着基础表达,意义在于维持细胞内稳态。目前针对逆转白血病耐药的研究较少,需要多进行相关研究以拓宽细胞免疫治疗在逆转耐药领域的应用。DC-CIK是具有发展潜力的抗肿瘤方法。本实验将为下一阶段研究逆转耐药的机制提供依据,DC-CIK细胞免疫疗法有望成为逆转肿瘤耐药的新方法。 相似文献
8.
《Biomarkers》2013,18(1):74-82
The objective of this study was to determine whether the expressions of the excision cross-complementing (ERCC1), thymidylate synthase (TS) and glutathione S-transferase P1 (GSTP1) are predictive of clinical outcomes in advanced gastric cancer (AGC) patients receiving treatment with adjuvant 5-fluorouracil (5-FU) and cisplatin (FP) chemotherapy. One hundred forty nine patients were included in this study. ERCC1 and GSTP1 expression was correlated significantly with tumor size (p?=?0.040, p?=?0.018, respectively). Stage and positive lymph node ratio were associated independently with disease free survival (DFS) and overall survival (OS). Both ERCC1 and GSTP1 expression had a significant impact on OS (hazard ratio?=?0.069, p?=?0.021). TS expression was not related to DFS and OS. 相似文献
9.
The modulation of radiation-induced cell death by genistein in K562 cells:Activation of thymidine kinase 1 总被引:4,自引:0,他引:4
Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML) cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization (SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression ofTK1 mRNA and TK 1 enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition, the expression of cell cycle-related proteins, cyclin A and cyclin B 1, provided the evidences of G I/S progression and G2-arrest, and their relationship with TKI in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells. 相似文献
10.
《生物磁学》2011,(20):3801-3804,3808
目的:探讨抑制甲基转移酶(DNMT)对K562细胞中癌-睾丸抗原表达的影响及其机制。方法:分别采用针对DNMT家族不同成员的siRNA转染K562细胞,采用RT—PCR检测细胞中DNMT及癌-睾丸抗原的水平表达,并采用甲基化特异PCR(MSP)检测部分癌.睾丸抗原基因启动子的甲基化状态。结果:经siRNA干扰后,K562细胞中DNMT1、DNMT3a和DNMT3b的表达量均明显降低,癌-睾丸抗原CTl0的启动子区序列发生了去甲基化,但处于非甲基化状态的MAGE.A1启动子区没有发生任何改变。干扰DNMT组的K562细胞,再表达癌-睾丸抗原CT10、PRAME和CT9,而MAGE-A1、ssx-1的表达上调,但是NY-ESO—1、HCA587和HCA661的表达状况均没有任何影响。结论:在K562细胞中,干扰DNMT可使部分癌-睾丸抗原基因的启动子区发生去甲基化,从而导致相应的癌-睾丸抗原分子的再表达或表达增加。 相似文献
11.
用限制性cDNA文库制作K562细胞基因表达谱芯片探针 总被引:1,自引:0,他引:1
以人红白血病K562细胞为材料,应用限制性显示PCR(RD-PCR)技术构建cDNA文库,该文库通过PCR引物3′端延伸两个不同碱基形成136对引物对cDNA进行限制性扩增,得到136组不同的PCR扩增产物,纯化后与载体连接并转化细菌,即为限制性cDNA文库,根据不同的分组进行克隆的鉴定和分离。并进行大量扩增制备cDNA芯片探针,该方法构建的文库因经过了限制性分组扩增,每组均含有特定的cDNA,因而大大加快了随后克隆的分离 和鉴定的速度,为基因芯片探针制备提供了一个新方法。 相似文献
12.
João Agostinho Machado-NetoPatricia Favaro Mariana LazariniFernando Ferreira Costa Sara T. Olalla SaadFabiola Traina 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(8):1404-1411
BCR-ABL kinase activates downstream signaling pathways, including the PI3K-Akt/mTOR and the MAPK pathway. IRS1 has been previously described as constitutively phosphorylated and associated with BCR-ABL in K562 cells, suggesting that IRS1 has role in the BCR-ABL signaling pathways. In this study, we analyzed the effect of IRS1 silencing, by shRNA-lentiviral delivery, in K562 cells, a CML cell line that presents the BCR-ABL. IRS1 silencing decreased cell proliferation and colony formation in K562 cells, which correlates with the delay of these cells at the G0/G1 phase and a decrease in the S phase of the cell cycle. Furthermore, IRS1 silencing in K562 cells resulted in a decrease of Akt, P70S6K and ERK1/2 phosphorylation. Nevertheless, apoptosis was unaffected by IRS1 knockdown and no alterations were found in the phosphorylation of BAD and in the expression of BCL2 and BAX. BCR-ABL and CRKL phosphorylation levels remained unaffected upon IRS1 silencing, and no synergistic effect was observed with imatinib treatment and IRS1 knockdown, indicating that IRS1 is downstream from BCR-ABL. In conclusion, we demonstrated that inhibition of IRS1 is capable of inducing the downregulation of Akt/mTOR and MAPK pathways and further decreasing proliferation, and clonogenicity and induces to cell cycle delay at G0/G1 phase in BCR-ABL cells. 相似文献
13.
Cavarra MS del Mónaco SM Assef YA Ibarra C Kotsias BA 《The Journal of membrane biology》2007,219(1-3):49-61
The human ether-a-go-go related gene (HERG1) K+ channel is expressed in neoplastic cells, in which it was proposed to play a role in proliferation, differentiation and/or
apoptosis. K562 cells (a chronic myeloid leukemic human cell line) express both the full-length (herg1a) and the N-terminally
truncated (herg1b) isoforms of the gene, and this was confirmed with Western blots and coimmunoprecipitation experiments.
Whole-cell currents were studied with a tail protocol. Seventy-eight percent of cells showed a HERG1-like current: repolarization
to voltages negative to −40 mV produced a transient peak inward tail current, characteristic of HERG1 channels. Cells were exposed to a HERG-specific channel
blocker, E4031. Half-maximal inhibitory concentration (IC50) of the blocker was 4.69 nm. The kinetics of the HERG1 current in K562 cells resembled the rapid component of the native cardiac delayed rectifier current,
known to be conducted by heterotetrameric HERG1 channels. Fast and slow deactivation time constants at −120 mV were 27.5 and 239.5 ms, respectively. Our results in K562 cells suggest the assembling of heterotetrameric channels, with
some parameters being dominated by one of the isoforms and other parameters being intermediate. Hydrogen peroxide was shown
to increase HERG1a K+ current in heterologous expression systems, which constitutes an apoptotic signal. However, we found that K562 HERG1 whole-cell
currents were not activated by H2O2. 相似文献
14.
15.
Andrés Delgado-Cañedo Daniel Garcia dos Santos José Artur Bogo Chies Kátia Kvitko Nance Beyer Nardi 《Cytotechnology》2006,51(3):141-148
The improvement of gene therapy protocols is intimately related to the establishment of efficient gene transfer methods. Electroporation has been increasingly employed in in vitro and in vivo protocols, and much attention has been given to increasing its transfection potential. The method is based on the application of an electric field of short duration and high voltage to the cells, forming reversible pores through which molecules can enter the cell. In this work, we describe the optimization of a protocol for the electroporation of K562 cells involving the combination of electric field, resistance and capacitance values. Using RPMI 1640 as pulsing buffer and 30 μg of pEGFP-N1 plasmid, 875 V cm−1, 500 μF and infinite resistance, we achieved transfection rates of 82.41 ± 3.03%, with 62.89 ± 2.93% cell viability, values higher than those reported in the literature. Analyzing cell cycle after electroporation, with three different electric field conditions, we observed that in a heterogeneous population of cells, viability of G1 cells is less affected by electroporation than that of cells in late S and G2/M phases. We also observed that efficiency of electroporation can be improved using the DNAse inhibitor Zn, immediately after the pulse. These results can represent a significant improvement of current methods of electroporation of animal and plant cells. 相似文献
16.
17.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):460-467
Glutathione transferase P1-1 is over expressed in some cancer cells and contributes to detoxification of anticancer drugs, leading to drug-resistant tumors. The inhibition of human recombinant GSTP1-1 by natural plant products was investigated using 10 compounds isolated from plants indigenous to Southern and Central Africa. Monochlorobimane and 1-chloro-2,4-dinitrobenzene were used to determine GST activity. Each test compound was screened at 33 and 100 µM. Isofuranonapthoquinone (1) (from Bulbine frutescens) showed 68% inhibition at 33 µM, and sesquiterpene lactone (2) (from Dicoma anomala) showed 75% inhibition at 33 μM. The IC50 value of 1 was 6.8 μM. The mode of inhibition was mixed, partial (G site) and noncompetitive (H site) with Ki values of 8.8 and 0.21 µM, respectively. Sesquiterpene 2 did not inhibit the CDNB reaction. Therefore, isofuranonapthoquinone 1 needs further investigations in vivo because of its potent inhibition of GSTP1-1 in vitro. 相似文献
18.
Micaloni C Kong GK Mazzetti AP Nuccetelli M Antonini G Stella L McKinstry WJ Polekhina G Rossjohn J Federici G Ricci G Parker MW Lo Bello M 《Journal of molecular biology》2003,325(1):111-122
We have sought the structural basis for the differing substrate specificities of human glutathione transferase P1-1 (class Pi) and human glutathione transferase A1-1 (class Alpha) by adding an extra helix (helix 9), found in the electrophilic substrate-binding site (H-site) of the human class Alpha enzyme, at the C terminus of the human class Pi enzyme. This class Pi-chimera (CODA) was expressed in Escherichia coli, purified and characterized by kinetic and crystallographic approaches. The presence of the newly engineered tail in the H-site of the human Pi enzyme alters its catalytic properties towards those exhibited by the human Alpha enzyme, as assessed using cumene hydroperoxide (diagnostic for class Alpha enzymes) and ethacrynic acid (diagnostic for class Pi) as co-substrates. There is a change of substrate selectivity in the latter case, as the k(cat)/K(m)(EA) value decreases about 70-fold, compared to that of class Pi. With 1-chloro-2,4-dinitrobenzene as co-substrate there is a loss of catalytic activity to about 2% with respect to that of the Pi enzyme. Crystallographic and kinetic studies of the class Pi-chimera provide important clues to explain these altered catalytic properties. The new helix forms many complimentary interactions with the rest of the protein and re-models the original electrophilic substrate-binding site towards one that is more enclosed, albeit flexible. Of particular note are the interactions between Glu205 of the new tail and the catalytic residues, Tyr7 and Tyr108, and the thiol moiety of glutathione (GSH). These interactions may provide an explanation of the more than one unit increase in the pK(a) value of the GSH thiolate and affect both the turnover number and GSH binding, using 1-chloro-2,4-dinitrobenzene as co-substrate. The data presented are consistent with the engineered tail adopting a highly mobile or disordered state in the apo form of the enzyme. 相似文献
19.
人纤溶酶原Kringle 1—5结构域的表达及活性鉴定 总被引:3,自引:0,他引:3
利用RT PCR的方法从人肝癌细胞株HepG2细胞内获得了编码人纤溶酶原 (hPlasminogen)的Kringle 1到 5(简称K1- 5 )的cDNA ,将其克隆到表达载体pHIL S1中。将重组载体pHIL K1- 5转化毕赤酵母GS115 ,得到的重组菌株用甲醇进行诱导表达 ,并利用赖氨酸亲和柱纯化重组蛋白质。重组蛋白质K1- 5能特异性地按剂量依赖的方式抑制碱性成纤维细胞生长因子 (bFGF)刺激的牛主动脉内皮细胞 (BAEC)的增殖 ,浓度为 14mg L时达到最大抑制效果的 5 0 % ;K1- 5能抑制bFGF引起的BAEC的迁移 ,5 0mg L的K1- 5对BAEC迁移的抑制率为 4 7% ;K1- 5还能影响BAEC细胞的周期 ,14mg L的K1- 5使细胞在G0 ~G1 期积聚。 相似文献
20.
EDAG—1,一种与造血调控密切相关新基因的分离和确认 总被引:9,自引:0,他引:9
以代表性差异显示分析技术(RDA)获得一种在人胎肝组织中高丰度表达的胚胎发育相关基因1(embry-onic develop associated gene1,EDAG-1),经筛选cDNA文库及5′末端cDNA快速扩增技术(rapid amplification of cDNA 5′end,5′RACE)获得其全长为2166bp的cDNA。该基因含编码484个氨基酸组成蛋白质的ORF,Blast检索表明编码蛋白质不含任何已知蛋白质功能结构域,与小鼠Hemogen及大鼠RP59基因同源。其mRNA3′端非释译区序列含2拷贝AUUUA结构,表明该基因mRNA稳定性差。体外翻译证明该基因编码蛋白质分子量为55.3kD,与理论预测值一致。Northern杂交及PCR检测表明该基因主要表达在成人在及胚胎胪组织,在K562和MO7e两株人髓性白血病细胞系中也有较高丰度表达。氯高铁血红素及红细胞生成素EPO(erythropoietin)诱导K562细胞向红系分化过程中,EDAG-1的表达随细胞的分化迅速下调;这些结果提示EDAG-1可能是一种与造血细胞分化调控密切相关的新基因。 相似文献