首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological restoration of the Southern Everglades will result in increased freshwater flow to the freshwater and estuarine wetlands bordering Florida Bay. We evaluated the contribution of surface freshwater runoff versus atmospheric deposition and ground water on the water and nutrient budgets of these wetlands. These estimates were used to assess the importance of hydrologic inputs and losses relative to sediment burial, denitrification, and nitrogen fixation. We calculated seasonal inputs and outputs of water, total phosphorus (TP) and total nitrogen (TN) from surface water, precipitation, and evapotranspiration in the Taylor Slough/C-111 basin wetlands for 1.5 years. Atmospheric deposition was the dominant source of water and TP for these oligotrophic, phosphorus-limited wetlands. Surface water was the major TN source of during the wet season, but on an annual basis was equal to the atmospheric TN deposition. We calculated a net annual import of 31.4 mg m–2 yr–1 P and 694 mg m–2 yr–1N into the wetland from hydrologic sources. Hydrologic import of P was within range of estimates of sediment P burial (33–70 mg m–2 yr–1 P), while sediment burial of N (1890–4027 mg m–2 yr–1 N) greatly exceeded estimated hydrologic N import. High nitrogen fixation rates or an underestimation of groundwater N flux may explain the discrepancy between estimates of hydrologic N import and sediment N burial rates.  相似文献   

2.
A well-defined nitrogen retention and turnover budget was estimated for a shallow oligohaline lake (Lake Pontchartrain, Louisiana, USA). In 1997 a month-long diversion of the Mississippi River filled the Lake with highly concentrated river water (80µM nitrate) and lowered the salinity to 0psu within 2 weeks. After the spillway was closed the Lake mixed with estuarine tidal waters and came to equilibrium over 4 months with the riverine, atmospheric and offshore water nitrogen sources. A flushing rate of 1.78% d–1 was estimated by analyzing a plot of ln salinity versus time for the first 120 days after the diversion ceased. This flushing rate was similar to the loss rate for total nitrogen (1.75% d–1), implying no significant net nitrogen losses or gains were occurring inside the Lake. The percent loss of dissolved inorganic nitrogen was higher than that for TN (4.11% d–1), whereas the loss of organic nitrogen was lower (0.94% d–1), which suggests a net transfer from inorganic to organic nitrogen. These changes occurred steadily as chlorophyll a concentration ranged from 5 to 200µg l–1. The results demonstrate the potential significance of the organic nitrogen and interconversion of nitrogen forms when calculating estuarine nitrogen retention budgets and the necessity of measuring all nitrogen forms when performing mass balance estimates. The significance of denitrification in nitrogen removal is minimal at the high loading rates observed during this study. An implication to estuarine water quality management is that the relationships between nitrogen loading and retention are not linear and are controlled by factors other than water residence time.  相似文献   

3.
Two bed media were tested (gravel and Filtralite) in shallow horizontal subsurface flow (HSSF) constructed wetlands in order to evaluate the removal of ammonia and nitrate for different types of wastewater (acetate-based and domestic wastewater) and different COD/N ratios. The use of Filtralite allowed both higher mass removal rates (1.1 g NH4–N m−2 d−1 and 3 g NO3–N m−2 d−1) and removal efficiencies (>62% for ammonia, 90–100% for nitrate), in less than 2 weeks, when compared to the ones observed with gravel. The COD/N ratio seems to have no significant influence on nitrate removal and the removal of both ammonia and nitrate seems to have involved not only the conventional pathways of nitrification–denitrification. The nitrogen loading rate of both ammonia (0.8–2.4 g NH4–N m−2 d−1) and nitrate (0.6–3.2 g NO3–N m−2 d−1) seem to have influenced the respective removal rates.  相似文献   

4.
Governmental programmes and international agreements to counteract eutrophication have largely not attained agreed objectives (e.g. reduction by half of the anthropogenic nitrogen load on Swedish coastal waters). Important components of such programmes are improved removal of nitrogen in municipal treatment plants and changed agricultural practices. In addition, increased N-removal during runoff, i.e. restoration of ponds and wetlands, is an important strategy. One explanation of the fact that the objectives have yet not been achieved might be that the most effective step to counteract diffuse pollution has not been fully implemented. It is therefore important to stress the potential of effective measures and find ways to fully implement them at the watershed level. It is important to avoid excessive applications of fertilizers because this leads to an exponential increase in leaching. Field experiments indicate that the use of winter crops or an undersown catch crop outside the main cropping season has reduced nitrate losses by up to 75% in single years, and by nearly 50% over successive years. In southern Sweden, the area of wetlands has been reduced considerably (more than 90%) by melioration activities. In a recent project, budget studies with restored ponds verified the importance of ponds and wetlands in nitrogen retention. Per unit area, increased nitrogen loading implied increased nitrogen retention, but often a decrease in the percent retained. Ponds with depths of 0.4–2.0 m and hydrological loads of 0.14–5.2 m3 m−2 day−1 were created. One hundred and fifty to seven thousand kg N ha−1 year−1 was removed in ponds loaded by streams dominated by agricultural run off. A pond receiving pre-treated municipal wastewater removed 8000 kg N ha−1 year−1. The upper limit for N-removal is set by the hydrological conditions. Sedimentation of organic material must be favoured in order to obtain adequate conditions for denitrification. To achieve the governmental objective in nitrogen load reduction changed cultivation practices within the agricultural sector must be combined with restoration of ponds/wetlands.  相似文献   

5.
Phosphorus and nitrogen retention in five Precambrian shield wetlands   总被引:11,自引:7,他引:4  
Phosphorus and nitrogen mass balances of five wetlands (two beaver ponds, two conifer-Sphagnum swamps and one sedge fen) situated in three catchments in central Ontario, Canada, were measured. Monthly and annual input-output budgets of total phosphorus (TP), total nitrogen (TN), total organic nitrogen (TON), total inorganic nitrogen (TIN), ammonium ion (NH4 + -N), nitrate (NO 3 -N) and dissolved organic carbon (DOC) were estimated for the five wetlands during the 1982–83 and 1983–84 water years. Except for the deepest beaver pond (3.2 m) which had annual TP retention of –44% (–0.030 ± 0.015 g m–2 yr–1), the wetlands retained < 0.001 to 0.015 g M–2 yr–1 ; however, this wasless than 20% of the inputs and the estimated budget uncertainties were equal to or greater than the retention rates. Annual TN retentions ranged from –0.44 to 0.56 g m–2 yr–1 (–12 to 4%) but were not significantly different from zero. The wetlands transformed nitrogen by retaining TIN (16 to 80% RT) and exporting an equivalent amount as TON (–7 to 102% RT). The beaver ponds, however, retained NO 3 while NH 4 + was passed through or the outputs exceeded the inputs. In contrast, the conifer swamps retained both NH 4 + and NO 3 . DOC fluxes into and out of the beaver ponds were equal (–18 and 4% RT) but output from the conifer swamps exceeded input by > 90%. Marked seasonal trends in nutrient retention were observed. Nutrient retention coincided with low stream flow, increased evapotranspiration and biotic uptake during the summer. Net nutrient export occurred during the winter and spring when stream flows were highest and biotic uptake was low.  相似文献   

6.
The Adirondack region of New York is characterized by soils and surface waters that are sensitive to inputs of strong acids, receiving among the highest rates of atmospheric nitrogen (N) deposition in the United States. Atmospheric N deposition to Adirondack ecosystems may contribute to the acidification of soils through losses of exchangeable basic cations and the acidification of surface waters in part due to increased mobility of nitrate (NO3). This response is particularly evident in watersheds that exhibit nitrogen saturation. To evaluate the contribution of atmospheric N deposition to the N export and the capacity of lake-containing watersheds to remove, store, or release N, annual N input–output budgets were estimated for 52 lake-containing watersheds in the Adirondack region from 1998 to 2000. Wet N deposition was used as the N input and the lake N discharge loss was used as the N output based on modeled hydrology and measured monthly solute concentrations. Annual outputs were also estimated for dissolved organic carbon (DOC). Wet N deposition increased from the northeast to the southwest across the region. Lake N drainage losses, which exhibited a wider range of values than wet N deposition, did not show any distinctive spatial pattern, although there was some evidence of a relationship between wet N deposition and the lake N drainage loss. Wet N deposition was also related to the fraction of N removed or retained within the watersheds (i.e., the fraction of net N hydrologic flux relative to wet N deposition, calculated as [(wet N deposition minus lake N drainage loss)/wet N deposition]). In addition to wet N deposition, watershed attributes also had effects on the exports of NO3, ammonium (NH4+), dissolved organic nitrogen (DON), and DOC, the DOC/DON export ratio, and the N flux removed or retained within the watersheds (i.e., net N hydrologic flux, calculated as [wet N deposition less lake N drainage loss]). Elevation was strongly related with the lake drainage losses of NO3, NH4+, and DON, net NO3 hydrologic flux (i.e., NO3 deposition less NO3 drainage loss), and the fraction of net NO3 hydrologic flux, but not with the DOC drainage loss. Both DON and DOC drainage losses from the lakes increased with the proportion of watershed area occupied by wetlands, with a stronger relationship for DOC. The effects of wetlands and forest type on NO3 flux were evident for the estimated NO3 fluxes flowing from the watershed drainage area into the lakes, but were masked in the drainage losses flowing out of the lakes. The DOC/DON export ratios from the lake-containing watersheds were in general lower than those from forest floor leachates or streams in New England and were intermediate between the values of autochthonous and allochthonous dissolved organic matter (DOM) reported for various lakes. The DOC/DON ratios for seepage lakes were lower than those for drainage lakes. In-lake processes regulating N exports may include denitrification, planktonic depletion, degradation of DOM, and the contribution of autochthonous DOM and the influences of in-lake processes were also reflected in the relationships with hydraulic retention time. The N fluxes removed or stored within the lakes substantially varied among the lakes. Our analysis demonstrates that for these northern temperate lake-containing watershed ecosystems, many factors, including atmospheric N deposition, landscape features, hydrologic flowpaths, and retention in ponded waters, regulated the spatial patterns of net N hydrologic flux within the lake-containing watersheds and the loss of N solutes through drainage waters.  相似文献   

7.
Prego  Ricardo 《Hydrobiologia》2002,(1):161-171
Inorganic and organic nitrogen fluxes in the Ria Vigo have been quantified in order to recognise the contrasting nitrogen budget scenarios and understand the biogeochemical response to eutrophication events. According to the nitrogen biogeochemical pathways of the ria reservoir (photosynthesis, remineralization, denitrification, PON rain rate and sedimentation), three main seasonal behavioural trends are emphasised: (1) low inorganic nitrogen inputs and low organic nitrogen fluxes, (2) high inorganic nitrogen input and output, (3) high inorganic nitrogen input and high organic nitrogen output. The first scenario occurs in late spring and in summer during non-upwelling situations. The consumption of inorganic nitrogen by net photosynthesis is approximately 2 mol N s–1 and the ria is oligotrophic (12 mgC m–2 h–1). The outgoing estuarine residual current transports phytoplanktonic material towards the mouth of the ria whereupon it sediments and is remineralized as it falls to the lower water layers and the incoming residual current. The regenerated nitrogen is reintroduced to the photic ria layer which leads to the greatest reduction in dissolved oxygen concentration (50% of saturation). Recycled nutrients play an important role in primary production during this oligotrophic state of the ria. Thus, approximately half of the inorganic nitrogen utilised by photosynthesis is ammonium. The majority of PON is deposited inside the ria (0.8 mmol N m–2 d–1) and the denitrification rate is 0.3 mmol N2 m–2 d–1. The other two cases occur in winter and spring–summer with upwelling. In winter, estuarine circulation and freshwater contributions control the nitrogen cycle. The ria mainly exports nitrate (up to 14 mol N s–1) and so there is fertilisation but no eutrophication. In spring and summer, the nitrogen cycle is controlled by upwelling circulation. The inorganic nitrogen consumption by net photosynthesis is high, 7–14 mmol N m–2 d–1, and the ria is a natural eutrophic system (70 mgC m–2 h–1). Accordingly, 90% of organic nitrogen is synthesised from nitrate and the upwelling-increased circulation exports 6.5 mol N s–1 of organic nitrogen.  相似文献   

8.
Factors influencing nitrate depletion in a rural stream   总被引:3,自引:3,他引:0  
Alan R. Hill 《Hydrobiologia》1988,160(2):111-122
A mass balance procedure was used to analyze rates of nitrate depletion in three adjacent reaches of West Duffin Creek, Ontario, Canada. Daily nitrate losses in individual reaches were highly variable (0.5–24 kg N) during low and moderate stream flows in May–October, 1982–1985. Nitrate removal efficiency (nitrate loss as a % of nitrate input) showed a rapid exponential decline with increased nitrate inputs to each reach. Nitrate losses and nitrate removal efficiency also had a significant negative correlation with stream discharge. The association of large nitrate loads with high stream discharge reduced the nitrate removal capacity of the stream because of shorter residence times and a higher ratio of water volume to stream bed area. Water temperature exhibited a significant positive correlation with nitrate loss which may reflect increased denitrification at higher temperatures.Variations in nitrate losses and nitrate removal efficiency between the three reaches were highly influenced by differences in water residence time. Standarized nitrate losses with respect to water residence time revealed a longitudinal decline in nitrate depletion between the reaches which was associated with a downstream decrease in stream nitrate concentration and in the organic carbon content of fine textured sediments from pool habitats.  相似文献   

9.
A mass balance procedure was used to determine rates of nitrate depletion in the riparian zone and stream channel of a small New Zealand headwater stream. In all 12 surveys the majority of nitrate loss (56–100%) occurred in riparian organic soils, despite these soils occupying only 12% of the stream's border. This disproportionate role of the organic soils in depleting nitrate was due to two factors. Firstly, they were located at the base of hollows and consequently a disproportionately high percentage (37–81%) of the groundwater flowed through them in its passage to the stream. Secondly, they were anoxic and high in both denitrifying enzyme concentration and available carbon. Direct estimates ofin situ denitrification rate for organic soils near the upslope edge (338 mg N m–2 h–1) were much higher than average values estimated for the organic soils as a whole (0.3–2.1 mg N m–2 h–1) and suggested that areas of these soils were limited in their denitrification activity by the supply of nitrate. The capacity of these soils to regulate nitrate flux was therefore under-utilized. The majority of stream channel nitrate depletion was apparently due to plant uptake, with estimates of thein situ denitrification rate of stream sediments being less than 15% of the stream channel nitrate depletion rate estimated by mass balance.This study has shown that catchment hydrology can interact in a variety of ways with the biological processes responsible for nitrate depletion in riparian and stream ecosystems thereby having a strong influence on nitrate flux. This reinforces the view that those seeking to understand the functioning of these ecosystems need to consider hydrological phenomena.  相似文献   

10.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

11.
Wetlands support physical and ecological functions that result in valuable services to society, including removal of reactive nitrogen (Nr) from surface water and groundwater. We compiled published data from wetland studies worldwide to estimate total Nr removal and to evaluate factors that influence removal rates. Over several orders of magnitude in wetland area and Nr loading rates, there is a positive, near-linear relationship between Nr removal and Nr loading. The linear model (null hypothesis) explains the data better than either a model of declining Nr removal efficiency with increasing Nr loading, or a Michaelis–Menten (saturation) model. We estimate that total Nr removal by major classes of wetlands in the contiguous U.S. is approximately 20–21% of the total anthropogenic load of Nr to the region. Worldwide, Nr removal by wetlands is roughly 17% of anthropogenic Nr inputs. Historical loss of 50% of native wetland area suggests an equivalent loss of Nr removal capacity. Expanded protection and large-scale restoration of wetlands should be considered in strategies to re-balance the global nitrogen cycle and mitigate the negative consequences of excess Nr loading.  相似文献   

12.
In this study, we used a two-dimensional (2D) mechanistic mathematical model in order to evaluate the relative contribution of different microbial reactions to organic matter removal (in terms of COD) in horizontal subsurface-flow constructed wetlands that treated urban wastewater. We also used the model to analyse the effect of increasing or decreasing the organic loading rate (changing the hydraulic loading rate (HLR) at a constant influent organic matter concentration, or changing the organic matter concentration at a constant HLR) on both the removal efficiency and the relative importance of the microbial reactions. The model is based on the code RetrasoCodeBright, which we modified to include the main microbial processes related to organic matter and nitrogen transformations in the wetlands: hydrolysis, aerobic respiration, nitrification, denitrification, sulphate reduction and methanogenesis. The model was calibrated and validated with data from two wetlands (each with a surface area of 55 m2) located in a pilot plant near Barcelona (Spain). According to the simulations, anaerobic processes (methanogenesis and sulphate reduction) are more widespread in the wetlands and contribute to a higher COD removal rate (60–70%) than anoxic (denitrification) and aerobic reactions do. These model results are confirmed by experimental observations. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis (33–52%). According to our simulations, decreasing the HLR (for example, from 40 to 25 mm/d) while maintaining a constant COD influent concentration has a clear positive impact on COD removal efficiency (which increases from 65% to 89%). Changing influent COD concentration (for example, from 290 to 190 mg/L) while maintaining a constant HLR has a smaller impact, causing efficiency to increase from 79% to 84%. Changes in influent COD concentration (at a constant HLR) affect the relative contribution of the microbial reactions to organic matter removal. However, this trend is not seen when the HLR changes and the COD influent concentration remains constant.  相似文献   

13.
Denitrification in a nitrogen-limited stream ecosystem   总被引:9,自引:6,他引:9  
Denitrification was measured in hyporheic, parafluvial, and bank sediments of Sycamore Creek, Arizona, a nitrogen-limited Sonoran Desert stream. We used three variations of the acetylene block technique to estimate denitrification rates, and compared these estimates to rates of nitrate production through nitrification. Subsurface sediments of Sycamore Creek are typically well-oxygenated, relatively low in nitrate, and low in organic carbon, and therefore are seemingly unlikely sites of denitrification. However, we found that denitrification potential (C & N amended, anaerobic incubations) was substantial, and even by our conservative estimates (unamended, oxic incubations and field chamber nitrous oxide accumulation), denitrification consumed 5–40% of nitrate produced by nitrification. We expected that denitrification would increase along hyporheic and parafluvial flowpaths as dissolved oxygen declined and nitrate increased. To the contrary, we found that denitrification was generally highest at the upstream ends of subsurface flowpaths where surface water had just entered the subsurface zone. This suggests that denitrifiers may be dependent on the import of surface-derived organic matter, resulting in highest denitrification rate at locations of surface-subsurface hydrologic exchange. Laboratory experiments showed that denitrification in Sycamore Creek sediments was primarily nitrogen limited and secondarily carbon limited, and was temperature dependent. Overall, the quantity of nitrate removed from the Sycamore Creek ecosystem via denitrification is significant given the nitrogen-limited status of this stream.  相似文献   

14.
The biogeochemistry of nitrogen in freshwater wetlands   总被引:12,自引:7,他引:12  
The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g N m-2) followed in rough order-of-magnitude decreases by plants and available inorganic nitrogen. Precipitation inputs (< 1–2 g N m-2 yr-1) are well known but other atmospheric inputs, e.g. dry deposition, are essentially unknown and could be as large or larger than wet deposition. Nitrogen fixation (acetylene reduction) is an important supplementary input in some wetlands (< < 1–3 g N m-2 yr-1) but is probably limited by the excess of fixed nitrogen usually present in wetland sediments.Plant uptake normally ranges from a few g N m-2 yr-1 to 35 g N m-2 yr-1 with extreme values of up to 100g N m-2 yr-1 Results of translocation experiments done to date may be misleading and may call for a reassessment of the magnitude of both plant uptake and leaching rates. Interactions between plant litter and decomposer microorganisms tend, over the short-term, to conserve nitrogen within the system in immobile forms. Later, decomposers release this nitrogen in forms and at rates that plants can efficiently reassimilate.The NO3 formed by nitrification (< 0.1 to 10 g N m-2 yr-1 has several fates which may tend to either conserve nitrogen (uptake and dissimilatory reduction to ammonium) or lead to its loss (denitrification). Both nitrification and denitrification operate at rates far below their potential and under proper conditions (e.g. draining or fluctuating water levels) may accelerate. However, virtually all estimates of denitrification rates in freshwater wetlands are based on measurements of potential denitrification, not actual denitrification and, as a consequence, the importance of denitrification in these ecosystems may have been greatly over estimated.In general, larger amounts of nitrogen cycle within freshwater wetlands than flow in or out. Except for closed, ombrotrophic systems this might seem an unusual characteristic for ecosystems that are dominated by the flux of water, however, two factors limit the opportunity for N loss. At any given time the fraction of nitrogen in wetlands that could be lost by hydrologic export is probably a small fraction of the potentially mineralizable nitrogen and is certainly a negligible fraction of the total nitrogen in the system. Second, in some cases freshwater wetlands may be hydrologically isolated so that the bulk of upland water flow may pass under (in the case of floating mats) or by (in the case of riparian systems) the biotically active components of the wetland. This may explain the rather limited range of N loading rates real wetlands can accept in comparison to, for example, percolation columns or engineered marshes.  相似文献   

15.
We compared the mechanisms of nitrogen (N) and phosphorus (P) removal in four young (<15 years old) constructed estuarine marshes with paired mature natural marshes to determine how nutrient retention changes during wetland ecosystem succession. In constructed wetlands, N retention begins as soon as emergent vegetation becomes established and soil organic matter starts to accumulate, which is usually within the first 1–3 years. Accumulation of organic carbon in the soil sets the stage for denitrification which, after 5–10 years, removes approximately the same amount of N as accumulating organic matter, 5–10 g/m2/yr each, under conditions of low N loadings. Under high N loadings, the amount of N stored in accumulating organic matter doubles while N removal from denitrification may increase by an order of magnitude or more. Both organic N accumulation and denitrification provide for long-term reliable N removal regardless of N loading rates. Phosphorus removal, on the other hand, is greatest during the first 1–3 years of succession when sediment deposition and sorption/precipitation of P are greatest. During this time, constructed marshes may retain from 3 g P/m2/yr under low P loadings to as much as 30 g P/m2/yr under high loadings. However, as sedimentation decreases and sorption sites become saturated, P retention decreases to levels supported by organic P accumulation (1–2 g P/m2/yr) and sorption/precipitation with incoming aqueous and particulate Fe, Al and Ca. Phosphorus cycling in wetlands differs from forest and other terrestrial ecosystems in that conservation of P is greatest during the early years of succession, not during the middle or late stages. Conservation of P by wetlands is largely regulated by geochemical processes (sorption, precipitation) which operate independently of succession. In contrast, the conservation of N is controlled by biological processes (organic matter accumulation, denitrification) that change as succession proceeds.  相似文献   

16.
In order to calibrate carrying capacity models, investigations were conducted into the effects of food concentration and food quality on the feeding rates of small (25–50 mm), medium (60–85 mm) and large (90–115 mm) Greenshell mussels (Perna canaliculus). Experimental diets varying from 3.3 to 6.0 μg l−1 chlorophyll a concentration and 12–25% organic content were fed to mussels housed in individual flow through chambers. Not surprisingly, this study found that the main factor affecting feeding rates is mussel size. Small mussels were observed to maintain a constant filtration rate of approximately 20 mg h−1 irrespective of food concentration or quality, whereas mussels of greater than 60 mm length had more variable filtration rates between 30 and 80 mg h−1. The filtration rates of these large mussels were also observed to increase positively with organic content, and showed no sign of levelling out, even at the highest organic content tested (25%). Highest rejection rates (50–70 mg h−1) were observed when the organic content of the available seston was low, suggesting that P. canaliculus are able to selectively reject organic material, thereby organically enriching their diet. It appears that the organic content of the seston is the primary determinant of the net efficiency with which food is selected from the available seston by the mussel. The present study shows that P. canaliculus of all sizes are capable of adapting their feeding behaviour to compensate for changes in the food supply, which may occur over relatively short time periods, in the culture environment.  相似文献   

17.
Constructed treatment wetlands (CTWs) have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N). But documented long-term case studies of CTWs treating dilute nitrate-dominated agricultural runoff are limited. This study presents an analysis of four years of water quality data for a 1.6-ha surface-flow CTW treating irrigation return flows in Yakima Basin in central Washington. The CTW consisted of a sedimentation basin followed by two surface-flow wetlands in parallel, each with three cells. Inflow typically contained 1–3 mg-N/L nitrate and <0.4 mg-N/L total Kjeldahl N (TKN). Hydraulic loading was fairly constant, ranging from around 125 cm/d in the sedimentation basin to 12 cm/d in the treatment wetlands. Concentration removal efficiencies for nitrate averaged 34% in the sedimentation basin and 90–93% in the treatment wetlands. Total N removal efficiencies averaged 21% and 57–63% in the sedimentation basin and treatment wetlands, respectively. Area-based first-order removal rate constants for nitrate in the wetlands averaged 142–149 m/yr. Areal removal rates for nitrate in treatment wetlands averaged 139–146 mg-N/m2/d. Outflow from the CTW typically contained <0.1 mg-N/L nitrate and <0.6 mg-N/L TKN. Rates of nitrate loss in wetlands were highly seasonal, generally peaking in the summer months (June–August). Nitrate loss rates also correlated significantly with water temperature (positively) and dissolved oxygen (negatively). Based on the modified Arrhenius relationship, θ for nitrate loss in the wetlands was 1.05–1.09. The CTW also significantly affected temperature and dissolved oxygen concentration in waters flowing through the system. On average, the sedimentation basin caused an increase in temperature (+1.7 °C) and dissolved oxygen (+1.5 mg/L); in contrast the wetlands caused a decrease in temperature (?1.6 °C) and dissolved oxygen (?5.0 mg/L). Results show that CTWs with surface-flow wetlands can be extremely effective at polishing dilute non-point sources, particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitrification.  相似文献   

18.
We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's Mississippi River delta plain for four intervals spanning 40 years, 1945–1985. A geographic information system was used to analyze spatial and temporal changes.Annual wetland loss rates increased over the 40 years; the rate of increase in annual rates accelerated through 1980 and then began to decelerate. The average annual rate of wetland loss for the entire study area increased from 0.2%/yr during 1945–1956, to 1.2%/yr for 1956–1969, 1.9%/yr for 1969–1980, and 2.0%/yr for 1980–1985. Wetland loss was not uniform throughout the study area. Eight sub-areas were identified as having different densities and/or causes of loss. Processes implicated in the differing loss rates include sea level rise, shoreline erosion, accelerated subsidence along natural levees, canal modification of hydrologic flows, interference of dredged material with sheet flow, and saltwater intrusion. In some areas, several processes are believed to operate together to induce wetland degradation and wetland loss.  相似文献   

19.
Biotrickling filter (BTF) technology was applied for the treatment of waste gas containing a mixture of chlorobenzene and 1,2-dichlorobenzene. An adapted microbial community was immobilised on a structured packing material. The strategy followed was to reach high removal efficiencies at initially low mass loading rates followed by an increase of the latter. This procedure was successful and resulted in a short start-up period of only 2 weeks. A 3-month operation under steady-state conditions showed good performance, with >95% removal efficiency at a mass loading rate of 1,800 g m–3 day–1. Dimensionless concentration profiles showed that the chlorobenzenes were simultaneously degraded. Low dissolved organic carbon of 15 mg l–1 and stoichiometric chloride concentrations in the trickling liquid indicated complete mineralisation of the pollutant. Transient-state experiments with five times higher mass loading rates caused a decrease in the removal efficiency that recovered rapidly once the mass loading rate returned to its original steady-state level. A progressive increase of the mass loading rate in a long-term performance experiment showed that the removal efficiency could be kept stable between 95 and 99% at loads of up to 5,200 g m–3 day–1 over several days. Above this mass loading rate, the elimination capacity did not increase any further. These results demonstrated that with a well-adapted inoculum and optimal operation parameters, a BTF system with excellent performance and stability that efficiently removes a mixture of cholorobenzene vapours from air can be obtained.  相似文献   

20.
Vegetation and water velocity effects on patterns of sediment deposition were tested by monitoring sedimentation rates in dense cattail, open water, and transitional vegetation zones at distances of 5, 10, and 20 m from the inflows of two experimental wetland basins at the Des Plaines River Wetlands Demonstration Project, northeastern Illinois, USA. One basin received a high hydrologic load (up to 50 cm/wk) and one basin received a low load (up to 6 cm/wk). Sediment deposition rates within 20 m of the inflows reached 3300 g dry wt m−2 day−1 in the high-load basin and 700 g dry wt m−2 day−1 in the low-load basin. Vegetation patterns did not have a significant effect (P > 0.05) on sediment deposition rates in the high-load basin, whereas water velocity effects on rates of sedimentation were significant (P < 0.01) in three of four periods of monitoring. In the low-load basin, vegetation effects were significant (P < 0.01) during the entire period of investigation. Experimental research at this scale aids in the assessment of design criteria for constructed wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号