首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psychophysically, spatial summation can be demonstrated as a decrease in threshold accompanying an increased field of stimulation. The present study examined to what extent different mechanically evoked percepts (pressure, sharpness, and pain) show spatial summation. Various probes were used to apply prescribed forces to the dorsal surface of the digits of 19 healthy subjects. The threshold for three perceptual qualities showed differing degrees of spatial summation: sharpness showed no statistically significant spatial summation; pain demonstrated some significant summation (46% on average); pressure showed the greatest degree of spatial summation (76% on average). The lack of significant spatial summation for sharpness threshold is consistent with the theory that perceived sharpness can be evoked by near threshold activity of a single nociceptor. The modest amount of spatial summation for pain implies that distinctly suprathreshold activation of nociceptors is required for mechanically evoked pain perception, and such input summates centrally, but not completely. The greater spatial summation observed for pressure vs. pain thresholds implies a greater degree of central summation for slowly adapting mechanoreceptors vs. nociceptors.  相似文献   

2.
We investigated the effects of tactile allodynia on the itch and mechanically evoked dysesthesiae produced by an intradermal injection of histamine in human volunteers. After an intradermal injection of capsaicin into the volar surface of one forearm, there developed an area of tactile allodynia to stroking and hyperalgesia to pricking the skin. Histamine was then injected simultaneously into the area of allodynia (experimental arm) and into the opposite forearm (control arm). Magnitude estimates of itch were obtained every 15 s for 5 min, and the areas of cutaneous hyperalgesia (pricking-evoked pain), alloknesis (stroking-evoked itch), hyperknesis (pricking-evoked itch) and wheal and flare were measured. The areas of wheal and flare were not significantly different on the two arms. The magnitude of itch and the areas of hyperknesis and alloknesis developed normally on the control arm but were absent or greatly reduced on the experimental arm. Thus, both the itch and the alloknesis and hyperknesis normally induced by histamine were absent or greatly reduced when histamine was injected in an area of capsaicin-induced allodynia. These results are compatible with the hypothesis that activity in capsaicin-sensitive, nociceptive primary afferent neurons evokes a central neuronal inhibitory process that prevents or reduces the itch and mechanically evoked dysesthesiae normally produced by an intradermal injection of histamine.  相似文献   

3.
孕酮(progesterone,PROG)不仅存在于生殖系统,而且在神经系统也有合成.孕酮受体在中枢和外周神经系统中均有分布,参与神经系统的各项功能,其中包括对疼痛的调节.孕酮及其代谢产物对生理性痛和炎性痛均有抑制效应,孕酮对雌激素介导的外周痛觉增敏也有抑制效应.另一方面,孕酮增强神经病理性痛的痛觉异常和痛觉过敏.孕酮可以通过调节某些痛觉相关的神经递质受体的表达和功能以及影响疼痛下行抑制通路,从而完成对痛觉调节.  相似文献   

4.
孕酮(progesterone,PROG)不仅存在于生殖系统,而且在神经系统也有合成。孕酮受体在中枢和外周神经系统中均有分布,参与神经系统的各项功能,其中包括对疼痛的调节。孕酮及其代谢产物对生理性痛和炎性痛均有抑制效应,孕酮对雌激素介导的外周痛觉增敏也有抑制效应。另一方面,孕酮增强神经病理性痛的痛觉异常和痛觉过敏。孕酮可以通过调节某些痛觉相关的神经递质受体的表达和功能以及影响疼痛下行抑制通路,从而完成对痛觉调节。  相似文献   

5.
Evoked potentials were recorded from olfactory bulb, piriformcortex and scalp in urethane anesthetized rats in response tobrief odorant stimuli (amyl acetate, phenylethyl alcohol, eugenol)presented through a nasal cannula by means of a constant flowolfactometer. The effects of stimulus duration, nasal cannulaposition, flow rate, concentration and interstimulus intervalwere examined. The highest amplitude potentials were evokedby 10% amyl acetate at 20 ms duration, 1000 ml/min flow rateand a 60-s interstimulus interval with the stimulus deliveredat the nares. Odorant evoked potentials from deep within theolfactory bulb consisted of a triphasic wave with major componentsat 60 ms (P60), 90 ms (N90) and 140 ms (P140) with the lattertwo reversing polarity close to the surface of the bulb. Potentialsrecorded from layer I of piriform cortex were of similar amplitude,but opposite in polarity to the deep olfactory bulb potentials.Recordings from the skin over the nose elicited waveforms ofsimilar morphology to the deep olfactory bulb potentials, butone-quarter the amplitude and of opposite polarity The evokedpotentials changed with repetitive stimulation The N90 componentwas not present initially and only appeared after several stimuli.The appearance of the N90 component depended on the integrityof the olfactory peduncle. Thus, olfactory evoked potentialsto odorant stimuli reflect dynamic aspects of the encoding ofolfactory information dependent on connections between olfactorybulb and piriform cortex  相似文献   

6.
Pain reduces itch - a commonly known effect of scratching the skin. Experimentally produced itch from histamine is sometimes accompanied by secondary sensations of pain. The present study investigated the effects of eliminating this pain, by means of a local anesthetic, on the itch and the enhanced mechanically evoked itch and pain that occur after an intradermal injection of histamine. In ten human subjects, the volar forearm was injected with either 20 mul of 2% chloroprocaine (experimental arm), or 20 mul of saline (control arm). Histamine 10 mul was injected into each bleb, and the resulting magnitude of itch estimated. The borders of three cutaneous areas were mapped within which mechanical stimulation of the skin surrounding the bleb elicited abnormal sensations (dysesthesiae): alloknesis, defined as itch evoked by innocuous stroking, and hyperalgesia and hyperknesis, characterized, respectively, by enhanced pain and enhanced itch evoked by pricking the skin with a fine tipped filament. The magnitude and duration of itch were significantly greater and the areas of dysesthesia significantly larger for the experimental than for the control arm. It is hypothesized that there exist two classes of histamine-sensitive primary afferent neurons. One class is 'pruritic', and mediates itch whereas the other is 'antipruritic', and evokes a centrally mediated reduction in histamine-evoked itch and dysesthesiae. It is further suggested that the anesthetic blocked the discharges of the antipruritic afferents, preventing the central inhibition from occurring and thereby unmasking the effects of the pruritic afferents.  相似文献   

7.
Pain reduces itch-a commonly known effect of scratching the skin. Experimentally produced itch from histamine is sometimes accompanied by secondary sensations of pain. The present study investigated the effects of eliminating this pain, by means of a local anesthetic, on the itch and the enhanced mechanically evoked itch and pain that occur after an intradermal injection of histamine. In ten human subjects, the volar forearm was injected with either 20 microl of 2% chloroprocaine (experimental arm), or 20 microl of saline (control arm). Histamine 10 microl was injected into each bleb, and the resulting magnitude of itch estimated. The borders of three cutaneous areas were mapped within which mechanical stimulation of the skin surrounding the bleb elicited abnormal sensations (dysesthesiae): alloknesis, defined as itch evoked by innocuous stroking, and hyperalgesia and hyperknesis, characterized, respectively, by enhanced pain and enhanced itch evoked by pricking the skin with a fine tipped filament. The magnitude and duration of itch were significantly greater and the areas of dysesthesia significantly larger for the experimental than for the control arm. It is hypothesized that there exist two classes of histamine-sensitive primary afferent neurons. One class is "pruritic", and mediates itch whereas the other is "antipruritic", and evokes a centrally mediated reduction in histamine-evoked itch and dysesthesiae. It is further suggested that the anesthetic blocked the discharges of the antipruritic afferents, preventing the central inhibition from occurring and thereby unmasking the effects of the pruritic afferents.  相似文献   

8.
9.
脑内阿片受体PET成像及其在痛与镇痛研究中的应用   总被引:1,自引:0,他引:1  
脑内阿片受体在痛与镇痛中的作用机制一直是神经科学领域研究热点之一。正电子发射体层扫描(positron emission tomography,PET)是目前在体定量检测脑内相关分子参与神经信号转导的唯一途径。本文在简要回顾阿片受体和内源性阿片肽的发现、生理功能及其脑内分布的基础上,对已应用或有望应用于人体的阿片受体选择性和非选择性示踪剂及其在PET成像中的应用进行介绍,并对阿片成像结果所反映的神经机制进行解读。鉴于脑内阿片受体在介导痛与镇痛中的重要作用,文中着重就近年来有关痛与镇痛的脑内阿片受体PET成像研究进展予以综述。  相似文献   

10.
Cheng Y  Lin CP  Liu HL  Hsu YY  Lim KE  Hung D  Decety J 《Current biology : CB》2007,17(19):1708-1713
Perceiving the pain of others activates a large part of the pain matrix in the observer [1]. Because this shared neural representation can lead to empathy or personal distress [2, 3], regulatory mechanisms must operate in people who inflict painful procedures in their practice with patient populations in order to prevent their distress from impairing their ability to be of assistance. In this functional magnetic resonance imaging MRI study, physicians who practice acupuncture were compared to naive participants while observing animated visual stimuli depicting needles being inserted into different body parts, including the mouth region, hands, and feet. Results indicate that the anterior insula somatosensory cortex, periaqueducal gray, and anterior cingulate cortex were significantly activated in the control group, but not in the expert group, who instead showed activation of the medial and superior prefrontal cortices and the temporoparietal junction, involved in emotion regulation and theory of mind.  相似文献   

11.
A generalized quantum theoretical framework, not restricted to the validity domain of standard quantum physics, is used to model the dynamics of the bistable perception of ambiguous visual stimuli such as the Necker cube. The central idea is to treat the perception process in terms of the evolution of an unstable two-state system. This gives rise to a Necker-Zeno effect, in analogy to the quantum Zeno effect. A quantitative relation between the involved time scales is theoretically derived. This relation is found to be satisfied by empirically obtained cognitive time scales relevant for bistable perception.  相似文献   

12.
In this review, we summarize the contribution of functional imaging to the question of nociception in humans. In the beginning of the 90's, brain areas supposed to be involved in physiological pain processes were almost exclusively the primary somatosensory area (SI), thalamus, and anterior cingulate cortex. In spite of these a priori hypotheses, the first imaging studies revealed that the main brain areas and those providing the most consistent activations in pain conditions were the insular and the SII cortices, bilaterally. This has been confirmed with other techniques such as intracerebral recordings of evoked potentials after nociceptive stimulations with laser showing a consistent response in the operculo-insular area which amplitude correlates with pain intensity. In spite of electrode implantations in other areas of the brain, only rare and inconsistent responses have been found outside the operculo-insular cortices. With electrical stimulation delivered directly in the brain, it has also been shown that stimulation in this area only--and not in other brain areas--was able to elicit a painful sensation. Thus, over the last 15 years, the operculo-insular cortex has been re-discovered as a main area of pain integration, mainly in its sensory and intensity aspects. In neuropathic pain also, these areas have been demonstrated as being abnormally recruited, bilaterally, in response to innocuous stimuli. These results suggest that plastic changes may occur in brain areas that were pre-defined for generating pain sensations. Conversely, when the brain activations concomitant to pain relief is taken into account, a large number of studies pointed out medial prefrontal and rostral cingulate areas as being associated with pain controls. Interestingly, these activations may correlate with the magnitude of pain relief, with the activation of the PAG, and, at least in some instances, with the involvement of endogenous opioids.  相似文献   

13.
Pain is emotionally detrimental and consciously avoided; however, it is absolutely crucial for our survival. Pain perception is one of the most complicated measurable traits because it is an aggregate of several phenotypes associated with peripheral and central nervous system dynamics, stress responsiveness and inflammatory state. As a complex trait, it is expected to have a polygenic nature shaped by environmental pressures. Here we discuss what is known about these contributing genetic variants, including recent discoveries that show a crucial role of voltage-gated sodium channel Nav1.7 in pain perception and how we can advance our understanding of the pain genetic network. We propose how both rare deleterious genetic variants and common genetic polymorphisms are mediators of human pain perception and clinical pain phenotypes.  相似文献   

14.
The purpose of this experiment was to examine the effects of the endogenous opioid system on forearm muscle pain and muscle sympathetic nerve activity (MSNA) during dynamic fatiguing exercise. Twelve college-age men (24 +/- 4 yr) performed graded (1-min stages; 30 contractions/min) handgrip to fatigue 1 h after the ingestion of either 60 mg codeine, 50 mg naltrexone, or placebo. Pain (0-10 scale) and exertion (0-10 and 6-20 scales) intensities were measured during the last 15 s of each minute of exercise and every 15 s during recovery. MSNA was measured continuously from the peroneal nerve in the left leg. Pain threshold occurred earlier [1.8 +/- 1, 2. 2 +/- 1, 2.2 +/- 1 J: codeine, naltrexone, and placebo, respectively] and was associated with a lower rating of perceived exertion (RPE) (2.7 +/- 2, 3.6 +/- 2, 3.8 +/- 2: codeine, naltrexone, and placebo, respectively) in the codeine condition compared with either the naltrexone or placebo conditions. There were no main effects (i.e., drugs) or interaction (i.e., drugs x time) for either forearm muscle pain or RPE during exercise [pain: F (2, 22) = 0.69, P = 0.51]. There was no effect of drug on MSNA, heart rate, or blood pressure during baseline, exercise, or recovery. Peak exercise MSNA responses were 21 +/- 1, 21 +/- 2.0, and 21 +/- 2.0 bursts/30 s for codeine, naltrexone, and placebo conditions, respectively. Peak mean arterial pressure responses were 135 +/- 4, 131 +/- 3, and 132 +/- 4 mmHg for codeine, naltrexone, and placebo conditions, respectively. It is concluded that neither 60 mg codeine nor 50 mg naltrexone has an effect on forearm muscle pain, exertion, or MSNA during high- intensity handgrip to fatigue.  相似文献   

15.
16.
Song X  Li B  Xiao Y  Chen C  Wang Q  Liu Y  Berezov A  Xu C  Gao Y  Li Z  Wu SL  Cai Z  Zhang H  Karger BL  Hancock WW  Wells AD  Zhou Z  Greene MI 《Cell reports》2012,1(6):665-675
Highlights? Antiparallel dimeric conformation critical for FOXP3 suppressive function ? IPEX mutations disrupted defined intersubunit bonding of the FOXP3 dimer ? Lysine acetylation modulate the intersubunit bonding of the FOXP3 dimer ? Mechanistic model explaining FOXP3 biology and pathology.  相似文献   

17.
18.
Voltage-dependent calcium channels represent a major pathway of calcium entry into neurons, where they participate actively to cell excitability and to the molecular processes of synaptic transmission. For that reason, they have been the direct or indirect pharmacological targets of analgesics and this long before their implication in the physiology of nociception had been demonstrated. These last years, the still more refined molecular characterization of these channels and their associated regulatory subunits and the demonstration of their implication in nociceptive processes indicates that these structures are prime pharmacological targets for the management of pain. Herein, we detail the recent breakthroughs on calcium channel structure, function and pharmacology, review the implication of calcium channels in the transmission of nociception, and evaluate their importance as targets for the treatment of pain perception. The search for specific inhibitors of voltage-dependent calcium channels appears as a prelude to the development of new promising analgesic molecules.  相似文献   

19.
The relationship between 10 components of somatosensory evoked potentials (EPs) and pain discrimination in man was studied using Signal Detection Theory (SDT) psychophysics. Two painful electrical stimuli were delivered to the right index finger in random order over all trials. EPs were recorded from the scalp at the contralateral primary somatic projection area while subjects performed SDT discrimination. The stimulus-response combination was classified into 4 categories according to SDT response: hits, misses, false alarms (FAs) and correct rejections (CRs). The amplitudes and peak latencies of EPs in 4 categories were compared with each other. EPs associated with hits and FAs had significantly greater amplitude at P 190, N 220 and P 270 than those associated with misses and CRs, while there was no change in the amplitude of other components. The amplitude of these 3 components systematically increased with an increase in the magnitude of subjective response. Peak latencies of all components were not related to the response categories. These results indicate that the amplitude of the 3 last components may be concerned with the pain evaluating system in the brain.  相似文献   

20.
Rats were treated with a combination of insecticide agents in different timing schemes. In acute administration, 1/5 LD50 of the three insecticides: dimethoate, propoxur and cypermethrin, or their combination, was given once by gavage. In the developmental model, female rats received oral doses of 1/25 LD50 of the above insecticides in combination in three timing schemes including pregnancy and lactation. Responses in the somatosensory cortex and in the tail nerve, evoked by peripheral electric stimulation, were recorded in acute preparation under urethane anesthesia. It was tested whether the parameters of the cortical and peripheral evoked response are dependent on the frequency and whether this dependence is different in control and treated animals. The latency increase of the cortical responses with increasing stimulation frequency was significantly stronger in rats treated acutely with cypermethrin and the combination, and in rats receiving the combination during both intra- and extrauterine development. On the duration, the effects were less clear. Frequency dependent increase of the tail nerve action potential latency was significantly intensified by cypermethrin, and the amplitude decrease, by cypermethrin and dimethoate. Fatigue of this response during a stimulation series was also altered by the insecticides. Frequency dependence and fatigue possibly reflect the actual state of the nervous system and may have the potency to be developed to functional biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号