共查询到20条相似文献,搜索用时 8 毫秒
1.
The ability of Fuc-GM1 ganglioside to mimic the receptor function of GM1 for cholera toxin (CT) has been investigated. For this purpose, rat glioma C6 cultured cells were enriched with Fuc-GM1 and the responsiveness to CT was compared with that of cells enriched with GM1 ganglioside. Fuc-GM1 was taken up by cells as rapidly and to the same extent as GM1. When comparable amounts of ganglioside were associated, the cells enriched with Fuc-GM1 bound the same amount of 125I-CT as did cells enriched with GM1. Under conditions in which GM1- and Fuc-GM1-enriched cells bound comparable amounts of CT, the Fuc-GM1-treated cells accumulated virtually the same amount of cyclic AMP as did GM1-treated cells, and activation of adenylate cyclase was also similar. The lag time preceding the CT-induced cAMP accumulation was the same in Fuc-GM1- and GM1-enriched cells. High-sensitivity isothermal titration calorimetry (ITC) experiments showed that the association constants of CT with Fuc-GM1 or GM1 ganglioside were comparable (4 x 10(7) M-1 and 1.9 x 10(7) M-1, respectively, at 25 degrees C). Also, the association constants of the B-subunit pentamer with Fuc-GM1 or GM1 ganglioside were comparable (about 3 x 10(7) M-1 and 7 x 10(7) M-1, respectively, at 25 degrees C). 相似文献
2.
Daniel A. Bricarello Emily J. Mills Jitka Petrlova John C. Voss Atul N. Parikh 《Journal of lipid research》2010,51(9):2731-2738
The ability to exogenously present cell-surface receptors in high-affinity conformations in a synthetic system offers an opportunity to provide host cells with protection from pathogenic toxins. This strategy requires improvement of the synthetic receptor binding affinity against its native counterpart, particularly with polyvalent toxins where clustering of membrane receptors can hinder binding. Here we demonstrate that reconstituted lipoprotein, nanometer-sized discoidal lipid bilayers bounded by apolipoprotein and functionalized by incorporation of pathogen receptors, provides a means to enhance toxin-receptor binding through molecular-level control over the receptor microenvironment (specifically, its rigidity, composition, and heterogeneity). Using a Foerster Resonance Energy Transfer (FRET)-based assay, we found that reconstituted lipoprotein incorporating low concentrations of ganglioside monosialotetrahexosylganglioside (GM1) binds polymeric cholera toxin with significantly higher affinity than liposomes or supported lipid bilayers, most likely a result of the enhanced control over receptor clustering provided by the lipoprotein platform. Using wide-area epifluorescence, we found that this enhanced binding capacity can be effectively utilized to divert cholera toxin away from populations of healthy mammalian cells. In summary, we found that reconstitutions of high-density lipoprotein can be engineered to include specific pathogen receptors; that their pathogen binding affinity is altered, presumably due to attenuation of receptor aggregation; and that these assemblies are effective at protecting cells from biological toxins. 相似文献
3.
Bernardi A Carrettoni L Ciponte AG Monti D Sonnino S 《Bioorganic & medicinal chemistry letters》2000,10(19):2197-2200
In a program directed towards the design and synthesis of mimics of ganglioside GM1, the NeuAc recognition domain was replaced by simple hydroxy acids, and the affinity of the new ligands to the cholera toxin was determined by fluorescence spectroscopy. The (R)-lactic acid derivative 4 was found to display the highest affinity of the series (KD = 190 microM). 相似文献
4.
Sinclair HR Smejkal CW Glister C Kemp F van den Heuvel E de Slegte J Gibson GR Rastall RA 《Carbohydrate research》2008,343(15):2589-2594
It is recognised that cholera toxin (Ctx) is a significant cause of gastrointestinal disease globally, particularly in developing countries where access to uncontaminated drinking water is at a premium. Ctx vaccines are prohibitively expensive and only give short-term protection. Consequently, there is scope for the development of alternative control strategies or prophylactics. This may include the use of oligosaccharides as functional mimics for the cell-surface toxin receptor (GM1). Furthermore, the sialic acid component of epithelial receptors has already been shown to contribute significantly to the adhesion and pathogenesis of Ctx. Here, we demonstrate the total inhibition of Ctx using GM1-competitive ELISA with 25mgmL(-1) of a commercial preparation of sialyloligosaccharides (SOS). The IC(50) value was calculated as 5.21mgmL(-1). One-hundred percent inhibition was also observed at all concentrations of Ctx-HRP tested with 500ngmL(-1) GM1-OS. Whilst SOS has much lower affinity for Ctx than GM1-OS, the commercial preparation is impure containing only 33.6% carbohydrate; however, the biantennary nature of SOS appears to give a significant increase in potency over constituent monosaccahride residues. It is proposed that SOS could be used as a conventional food additive, such as in emulsifiers, stabilisers or sweeteners, and are classified as nondigestible oligosaccharides that pass into the small intestine, which is the site of Ctx pathogenesis. 相似文献
5.
S Spiegel 《Biochemistry》1985,24(21):5947-5952
A fluorescent derivative of ganglioside GM1 was prepared by oxidation of the sialic acid residue with sodium periodate and reaction of the resulting aldehyde with Lucifer yellow CH. The biological activity of the fluorescent derivative was compared with that of native GM1 using GM1-deficient rat glioma C6 cells. When the cells were exposed to either native or fluorescent GM1, their ability to bind 125I-labeled cholera toxin was increased to a similar extent. This increase in binding was directly proportional to the amount of ganglioside added to the medium. The affinity of the toxin for cells treated with either native or fluorescent GM1 also was similar. More importantly, the fluorescent GM1 was as effective as native GM1 in enhancing the responsiveness of the cells to cholera toxin. Thus, the ganglioside-treated cells exhibited a 9-fold increase in toxin-stimulated cyclic AMP production over cells not exposed to GM1. There was a similar increase in iodotoxin binding and toxin-stimulated cyclic AMP accumulation in cells treated with other GM1 derivatives containing rhodaminyl or dinitrophenyl groups. On the basis of these results, it is clear that these modified gangliosides retain the ability to function as receptors for cholera toxin. Consequently, fluorescent gangliosides are likely to be useful as probes for investigating the dynamics and function of these membrane components. 相似文献
6.
7.
Generation of cell surface neoganglioproteins. GM1-neoganglioproteins are non-functional receptors for cholera toxin 总被引:2,自引:0,他引:2
GM1 (II3Neu5Ac-GgOse4Cer)-oligosaccharide was prepared from the ganglioside by ozonolysis and alkaline fragmentation, reductively aminated and coupled to the heterobifunctional cross-linker succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate. The resulting derivative reacted with free sulfhydryl groups and readily cross-linked to cell surface components on rat glioma C6 cells which are GM1-deficient. Attachment of the GM1-oligosaccharide derivative, which was monitored by increased binding of 125I-cholera toxin to the cells, was both time- and concentration-dependent. Prior treatment of the cells with dithiothreitol enhanced the attachment by generating additional free sulfhydryl groups. The affinity of cholera toxin for cells treated with the GM1-oligosaccharide derivative or with GM1 was similar. The nature of the newly generated toxin receptors was determined by Western blotting. Membranes from derivatized cells were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved components were electrophoretically transferred to a nitrocellulose sheet which was overlain with 125I-cholera toxin. The toxin bound to a wide variety of membrane proteins, most of which were trypsin-sensitive. No such binding was observed using membranes from control cells. Although the GM1-neoganglioproteins newly generated on the surface of rat glioma C6 cells readily bound cholera toxin, the cells did not become more responsive to the toxin as measured by increased production of cyclic AMP or activation of adenylate cyclase. In contrast, cells exposed to GM1 became highly responsive to the toxin. Thus, neoganglioproteins on the cell surface appear to behave as nonfunctional receptors for cholera toxin. 相似文献
8.
Interaction of cholera toxin with ganglioside GM1 receptors in supported lipid monolayers 总被引:5,自引:0,他引:5
Lipid monolayers formed at the air-water interface containing the ganglioside GM1 in egg yolk phosphatidylcholine have been transferred according to the Langmuir-Blodgett technique to glass cover slips coated with octadecyl- or hexadecyltrichlorosilane and carbon-coated electron microscope grids. Monolayer transfer has been demonstrated with fluorescence microscopy, by the transfer of a fluorescent phospholipid analogue, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine or Lucifer yellow labeled GM1 (LY-GM1), incorporated into the lipid monolayer. Incubation of supported monolayers with solutions of fluorescein-labeled cholera toxin (FITC cholera toxin) resulted in specific binding of the toxin to monolayers containing GM1, as revealed by fluorescence microscopy. Lateral diffusion coefficients were measured for both the receptor (LY-GM1) [(3.9 +/- 2.1) X 10(-8) cm2/s] and the receptor-ligand complex (GM1-FITC cholera toxin) [(8.9 +/- 3.2) X 10(-9) cm2/s] according to the technique of fluorescence recovery after photobleaching. In separate studies, GM1-containing monolayers transferred to electron microscope grids were incubated with solutions containing unlabeled cholera toxin, followed by negative staining with uranyl acetate. Electron microscopy revealed patches of stained cholera toxin molecules (diameter approximately 70 A) in crystalline, two-dimensional hexagonal arrays. Optical diffraction and image reconstruction showed the arrangement of the cholera toxin molecules in a planar hexagonal cell, a = 81 A. These initial reconstructions give structural information to a resolution of approximately 30 A and indicate a doughnut-shaped molecule with a central aqueous channel. 相似文献
9.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth. 相似文献
10.
Neoglycolipid analogues of ganglioside GM1 as functional receptors of cholera toxin. 总被引:2,自引:0,他引:2
We synthesized several lipid analogues of ganglioside GM1 by attaching its oligosaccharide moiety (GM1OS) to aminophospholipids, aliphatic amines, and cholesteryl hemisuccinate. We incubated GM1-deficient rat glioma C6 cells with each of the derivatives as well as native GM1 and assayed the cells for their ability to bind and respond to cholera toxin. On the basis of the observed increase in binding of 125I-labeled cholera toxin, it was apparent that the cells took up and initially incorporated most of the derivatives into the plasma membrane. In the case of the aliphatic amine derivatives, the ability to generate new toxin binding sites was dependent on chain length; whereas the C10 derivative was ineffective, C12 and higher analogues were effective. Increased binding was dependent on both the concentration of the neoglycolipid in the medium and the time of exposure. Cells pretreated with the various derivatives accumulated cyclic AMP in response to cholera toxin, but there were differences in their effectiveness. The cholesterol and long-chain aliphatic amine derivatives were more effective than native GM1, whereas the phospholipid derivatives were less effective. The distance between GM1OS and the phospholipid also appeared to influence its functional activity. The neoglycolipid formed by cross-linking the amine of GM1OS to phosphatidylethanolamine (PE) with disuccinimidyl suberate was less effective than the neoglycolipid formed by directly attaching GM1OS to PE by reductive amination. Furthermore, insertion of a C8 spacer in the former neoglycolipid rendered it even less effective.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. 总被引:20,自引:5,他引:20 下载免费PDF全文
E. A. Merritt S. Sarfaty F. van den Akker C. L'Hoir J. A. Martial W. G. Hol 《Protein science : a publication of the Protein Society》1994,3(2):166-175
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction. 相似文献
12.
Endocytosis of exogenous GM1 ganglioside and cholera toxin by neuroblastoma cells. 总被引:5,自引:0,他引:5 下载免费PDF全文
N K Gonatas A Stieber J Gonatas T Mommoi P H Fishman 《Molecular and cellular biology》1983,3(1):91-101
Cholera toxin (CT) covalently linked to horseradish peroxidase (HRP) is a specific cytochemical marker for its receptor, the monosialoganglioside GM1. The binding and endocytosis of exogenous [3H]GM1 by cultured murine neuroblastoma cells (line 2A [CCl-131] ), which contain predominantly GM3, was examined by quantitative electron microscope autoradiography. The relationship between exogenous receptor, [3H]GM1, and CT HRP was studied in double labeling experiments consisting of autoradiographic demonstration of [3H]GM1 and cytochemical visualization of HRP. Exogenous [3H]GM1 was not degraded after its endocytosis by cells for 2 h at 37 degrees C. Quantitative studies showed similar grain density distributions in cells treated with [3H]GM1 alone and in cells treated with [3H]GM1 followed by CT-HRP. Qualitative studies conducted in double labeling experiments showed autoradiographic grains over the peroxidase-stained plasma membrane, lysosomes, and vesicles at the trans aspect of the Golgi apparatus. The findings indicate that exogenous glycolipid is associated with the plasmid membrane of deficient cells and undergoes endocytosis. The quantitative ultra-structural autoradiographic studies are consistent with the hypothesis that the spontaneous endocytosis of exogenous [3H]GM1 controls the subsequent uptake of CT-HRP. 相似文献
13.
14.
Adam W. Dalziel Gert Lipka Babur Z. Chowdhry Julian M. Sturtevant David E. Schafer 《Molecular and cellular biochemistry》1984,63(1):83-91
Summary The B, or binding, subunit of cholera enterotoxin forms a pentameric ring structure in the intact toxin, and also when the subunit is isolated from the A subunit. The thermal denaturation of the B subunit ring was examined by differential scanning calorimetry in the presence and absence of ganglioside GM1, its natural receptor. In the absence of ganglioside an irreversible endotherm was observed with maximal excess apparent heat capacity, Cmax, at 74.6° C. When the ganglioside was added in increasing amounts, multiple transitions were observed at higher temperatures, the most prominent having a Cmax at 90.8° C. At high ganglioside concentrations, the 74.6° C transition was not observed. In addition to the thermodynamic results a model is proposed for the interaction of GM1 and B subunit pentamer. This model is derived independently of the calorimetric results (but is consistent with such data) and is based upon considerations of the geometry of the GM1 micelle-B subunit pentamer.Abbreviations Mr
molecular weight in daltons
- GM1
H3Neu-AcGgOse4Cer* = Gall 3Ga1NAc1 4Gal-[3 - 2NeuAc]1 4Glc1 1Cer (asterisked form follows the recommendations of the IUPACIUB Commission on Biochemical Nomenclature, Ref. 3)
- R
molar ratio of GM1 to B monomer
- DSC
differential scanning calorimetry
- Cmax
excess apparent heat capacity
- Cmax
maximal value of Cex
- tm
temperature (° C) at Cex = Cmax
- t1/2
peak width in °C at Cex = Cmax/2
- Hcal
calorimetric enthalpy
- C
p
d
van't Hoff enthalpy
- C
p
d
change in specific heat accompanying denaturation 相似文献
15.
Cholera toxin is a complex protein with a biologically active protein (A subunit) and a cell targeting portion (B subunit). The B subunit is responsible for specific cell binding and entry of the A subunit. One way to limit potential toxicity of the toxin after exposure is to introduce cellular decoys to bind the toxin before it can enter cells. In this study the ganglioside GM1, a natural ligand for cholera toxin, was incorporated into liposomes and the interaction between fluorescent B subunit and the liposome determined. Liposome membrane fluidity was determined to play a major role in the binding between liposomes and the cholera toxin B subunit. Liposomes with lower fluidity demonstrated greater binding with the B subunit. The findings from this study could have important implications on formulation strategies for liposome decoys of toxins. 相似文献
16.
A systematic study of the lipid-layer two-dimensional crystallization technique has been carried out on the system composed of cholera toxin B-subunit and monosialoganglioside GM1, by electron microscopy, image analysis, and lipid film surface pressure measurements. Concentrations of protein and lipid components required for two-dimensional crystallization of toxin-GM1 complexes have been determined. Crystals were only obtained in the presence of mixed lipid films, composed of GM1 and of unsaturated lipids, such as dioleoylphosphatidylcholine or dioleoylphosphatidylethanolamine, in agreement with a previous report [D. S. Ludwig et al., (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8585–8588]. Crystals were obtained with cholera toxin B-subunit concentration as low as 5 μg/ml, as well as in the presence of protein contaminants. They were obtained over a wide range of concentrations of both GM1 and unsaturated lipids. The minimal lipid amount needed for crystallization corresponded to a lipid monolayer at, or near, the maximal spreading pressure (50 mN/m). The use of an excess of lipid resulted in a stabilization of lipid monolayers and in a higher reproducibility or crystallization experiments. 相似文献
17.
Ganglioside GM1 beta-galactosidase: studies in human liver and brain 总被引:10,自引:0,他引:10
A microcolumn assay for ganglioside GM1 β-galactosidase (EC 3.2.1.23) has been developed using GM1 tritiated exclusively in the terminal galactose residue. The reaction is stimulated up to 100-fold by anionic and cationic detergents; this stimulation is inhibited by neutral detergents. 4-Methylumbelliferyl β-d-galactopyranoside is hydrolyzed about seven times more rapidly than GM1 in human brain (gray matter) and liver. Agarose gel filtration separated two forms of GM1 β-galactosidase in both brain and liver. The major form (ganglioside GM1 β-galactosidase A) had a molecular weight of 60–70 × 103 and the minor form (ganglioside GM1 β-galactosidase B) 600–800 × 103. The liver and brain GM1 β-galactosidases and 4-methylumbelliferyl β-galactosidase A cochromatographed on fractionation. The two forms of the enzyme in liver isolated by gel filtration corresponded to the two major forms found on starch gel electrophoresis and were converted to electrophoretically slower-moving forms after treatment with neuraminidase (EC 3.2.1.8, Cl. perfringens) suggesting that both are sialylated glycoproteins. The activity of GM1 β-galactosidase in the brain and liver tissue of patients with GM1 gangliosidosis Types I and II was less than 2% of control values. The mutation in each GM1 gangliosidosis appears to result in a severe reduction of activity of two ganglioside GM1 β-galactosidases. 相似文献
18.
In a previous paper we showed that the B-pentamer of cholera toxin (CT-B) binds with reduced binding strength to different C(1) derivatives of N-acetylneuraminic acid (NeuAc) of the natural receptor ganglioside, GM1. We have now extended these results to encompass two large amide derivatives, butylamide and cyclohexylmethylamide, using an assay in which the glycosphingolipids are adsorbed on hydrophobic PVDF membranes. The latter derivative showed an affinity approximately equal to that earlier found for benzylamide ( approximately 0.01 relative to native GM1) whereas the former revealed a approximately tenfold further reduction in affinity. Another derivative with a charged C(1)-amide group, aminopropylamide, was not bound by the toxin. Toxin binding to C(7) derivatives was reduced by about 50% compared with the native ganglioside. Molecular modeling of C(1) and C(7) derivatives in complex with CT-B gave a structural rationale for the observed differences in the relative affinities of the various derivatives. Loss of or altered hydrogen bond interactions involving the water molecules bridging the sialic acid to the protein was found to be the major cause for the observed drop in CT-B affinity in the smaller derivatives, while in the bulkier derivatives, hydrophobic interactions with the protein were found to partly compensate for these losses. 相似文献
19.
We previously reported that when the oligosaccharide of ganglioside GM1 is covalently attached to cell surface proteins of GM1-deficient rat glioma C6 cells, the cells bind large amounts of cholera toxin (CT) but their cAMP response to CT is not enhanced [Pacuszka, T., & Fishman, P. H. (1990) J. Biol. Chem. 265, 7673-7668]. We now report that when such cells were exposed to CT in the presence of chloroquine, an acidotropic agent, they accumulated cAMP. This raised the possibility that CT bound to cell surface "neoganglioproteins" may be entering the cells through a different pathway from that of CT-bound GM1. To further explore this phenomenon, we covalently attached GM1 oligosaccharide to human transferrin (Tf). The modified protein (GM1OS-Tf) bound with high affinity to Tf receptors on HeLa cells and increased the binding of CT to the cells. The bound CT, however, was unable to activate adenylyl cyclase as measured by cyclic AMP accumulation. By contrast, treatment of HeLa cells with GM1 increased both CT binding and stimulation of cyclic AMP accumulation. Control cells and cells treated with either GM1 or GM1OS-Tf were exposed to CT in the presence of chloroquine. Whereas chloroquine had little or no effect on the response of control or GM1-treated cells to CT, it made the cells treated with GM1OS-Tf responsive to the toxin. Our results indicate that CT bound to its natural receptor GM1 enters the cells through a pathway different from that of toxin bound to neoganglioproteins. 相似文献
20.
GM(1)-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples 总被引:1,自引:0,他引:1
Vibrio cholerae, the causative agent for cholera, infects its host by expressing a protein consisting of two subunits: the pentameric cholera toxin B (CTB) and cholera toxin A (CTA). CTB frequently is used as an indicator of the presence of pathogenic V. cholerae and typically is detected using enzyme-linked immunosorbent assays (ELISAs). In lieu of an enzyme-linked detection method, we have developed GM(1) ganglioside-functionalized fluorescent dye-encapsulating liposomes for the detection of CTB produced by V. cholerae in a simple microtiter plate assay. Liposomes were compared with fluorescein-labeled antibodies and enzyme-linked secondary antibodies for quantification of purified CTB. A limit of detection for CTB using the liposomes was 340pg/ml, which was comparable to that using the ELISA but 18 times lower than that using the fluorescein-labeled anti-CTB antibodies for the same purpose. The sensitivity of the assay provided by the liposomes was substantial, and the working range improved when compared with that of the fluorescein-labeled antibodies and the ELISA. In addition, the liposomes required shorter assay times, exhibited greater precision, and were less expensive compared with the ELISA. The liposomes were optimized with respect to phospholipid and ganglioside concentrations. The optimized liposomes were then used to probe culture supernatants from V. cholerae El Tor C6706 grown in Dulbecco's modified Eagle's medium and AKI medium for the presence of CTB. 相似文献