首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(dA).poly(dT), but not B-form DNA, is specifically recognized by experimentally induced anti-kinetoplast or anti-poly(dA).poly(dT) immunoglobulins. Antibody binding is completely competed by poly(dA).poly(dT) and poly(dA).poly(dU) but not by other single- or double-stranded DNA sequences in a right-handed B-form. Antibody interaction with poly(dA).poly(dT) depends on immunoglobulin concentration, incubation time and temperature, and is sensitive to elevated ionic strengths. Similar conformations, for example, (dA)4-6 X (dT)4-6, in the kinetoplast DNA of the parasite Leishmania tarentolae are also immunogenic and induce specific anti-poly(dA).poly(dT) antibodies. These antibody probes specifically recognize nuclear and kinetoplast DNA in fixed flagellated kinetoplastid cells as evidenced by immunofluorescence microscopy. Anti-poly(dA).poly(dT) immunofluorescence is DNase-sensitive and competed by poly(dA).poly(dT), but not other classical double-stranded B-DNAs. Thus, these unique cellular B'-DNA helices are immunogenic and structurally similar to synthetic poly(dA).poly(dT) helices in solution.  相似文献   

2.
R Losa  S Omari    F Thoma 《Nucleic acids research》1990,18(12):3495-3502
It was suggested that poly(dA).poly(dT) rich sequences in yeast Saccharomyces cerevisiae act as elements of constitutive promoters by exclusion of nucleosomes (Struhl, K. (1985). Proc. Natl. Acad. Sci. USA 82, 8419-8423). We have mapped the chromatin structure of the pet56-his3-ded1 region in minichromosomes and show that the poly(dA).poly(dT) sequences are located in nuclease sensitive regions. DNA fragments from the nuclease sensitive promoter region of DED1 were used for nucleosome reconstitution in vitro. We show that all sequences can form nucleosome cores and that the poly(dA).poly(dT) sequence can be incorporated in nucleosome cores. The results suggest that the nuclease sensitivity found in vivo is not established by poly(dA).poly(dT) mediated exclusion of nucleosomes.  相似文献   

3.
B C Sang  D M Gray 《Biochemistry》1987,26(23):7210-7214
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.  相似文献   

4.
5.
Coralyne is a small crescent-shaped molecule known to intercalate duplex and triplex DNA. We report that coralyne can cause the complete and irreversible disproportionation of duplex poly(dT)·poly(dA). That is, coralyne causes the strands of duplex poly(dT)·poly(dA) to repartition into equal molar equivalents of triplex poly(dT)·poly(dA)·poly(dT) and poly(dA). Poly(dT)·poly(dA) will remain as a duplex for months after the addition of coralyne, if the sample is maintained at 4°C. However, disproportionation readily occurs upon heating above 35°C and is not reversed by subsequent cooling. A titration of poly(dT)·poly(dA) with coralyne reveals that disproportionation is favored by as little as one molar equivalent of coralyne per eight base pairs of initial duplex. We have also found that poly(dA) forms a self-structure in the presence of coralyne with a melting temperature of 47°C, for the conditions of our study. This poly(dA) self-structure binds coralyne with an affinity that is comparable with that of triplex poly(dT)·poly(dA)·poly(dT). A Job plot analysis reveals that the maximum level of poly(dA) self-structure intercalation is 0.25 coralyne molecules per adenine base. This conforms to the nearest neighbor exclusion principle for a poly(dA) duplex structure with A·A base pairs. We propose that duplex disproportionation by coralyne is promoted by both the triplex and the poly(dA) self-structure having binding constants for coralyne that are greater than that of duplex poly(dT)·poly(dA).  相似文献   

6.
7.
Conformational analysis of four stranded DNA helices poly(dT).poly(dA).poly(dA).poly(dT) with parallel arrangement of the identical sugar-phosphate chains connected by twofold symmetry has been performed. All possible models of symmetrical base binding were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of four stranded polynucleotides were calculated. The dependences of conformational energy on the base complex structure and mutual orientation of the poly(dA).and poly(dT) chains were studied. Possible biological functions of four stranded helices are discussed.  相似文献   

8.
9.
10.
Intergenic regions of the Dictyostelium genome contain an extremely high proportion of AT base pairs. Those intergenic regions which have been subjected to nucleotide sequence analysis are predominantly composed of alternating runs of poly(dA) and poly(dT) and there is evidence to suggest that nucleosomes do not form on such sequences. We have identified two nuclear proteins, of molecular weight 70,000 and 74,000 daltons, which bind only to intergenic regions of a cloned Dictyostelium gene. Binding is specifically inhibited in the presence of synthetic poly(dA) - poly (dT) as competitor. These proteins may play some role in the chromosomal organization of intergenic regions in Dictyostelium discoideum.  相似文献   

11.
Ross PD  Howard FB 《Biopolymers》2003,68(2):210-222
To assess the thermodynamic contribution of the 5-methyl group of thymine, we have studied the two-stranded helical complexes poly(dA).poly(dU) and poly(dA).poly(dT) and the three-stranded complexes--poly(dA).2poly(dU), poly(dA).poly(dT).poly(dU) and poly(dA).2poly(dT)--by differential scanning calorimetry, and uv optical melting experiments. The thermodynamic quantities associated with the 3 --> 2, 2 --> 1, and 3 --> 1 melting transitions are found to vary with salt concentration and temperature in a more complex manner than commonly believed. The transition temperatures, T(m), are generally not linear in the logarithm of concentration or activity of NaCl. The change in enthalpy and in entropy upon melting varies with salt concentration and temperature, and a change in heat capacity accompanies each transition. The poly(dA).2poly(dU) triple helix is markedly different from poly(dA).2poly(dT) in both its CD spectrum and thermodynamic behavior, while the poly(dA).poly(dT).poly(dU) triple helix resembles poly(dA).2poly(dT) in these properties. In comparing poly(dA).2poly(dT) with either the poly(dA).poly(dT).poly(dU) or the poly(dA).2poly(dU) triplexes, the substitution of thymine for uracil in the third strand results in an enhancement of stability against the 3 --> 2 dissociation of deltadeltaG degrees = -135 +/- 85 cal (mol A)(-1) at 37 degrees C. This represents a doubling of the absolute stability toward dissociation compared to the triplexes with poly(dU) as the third strand. The poly (dA).poly (dT) duplex is more stable than poly(dA).poly(dU) by deltadeltaG degrees = -350 +/- 60 cal (mol base pair)(-1) at 37 degrees C. Poly(dA).poly(dT) has 50% greater stability than poly(dA).poly(dU) as a result of the dT for dU substitution in the duplex.  相似文献   

12.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

13.
Summary The effect of Aclacinomycin B (ACM-B), an anthracycline antitumor antibiotic, on the DNA-dependent RNA synthesis using single- and double-stranded DNAs of known base content and sequence is studied. The data show that ACM-B effectively inhibits the double-stranded DNA-directed RNA synthesis with a preference of poly[d(A-T)] > poly[d(G-C)] > poly[d(I-C)]. In contrast, it has no inhibitory effect on the template function of single-stranded DNA (e.g. poly dA, poly dT, and poly dC). These results suggest that the mechanism of ACM-13 inhibition, like other anthracycline antibiotics, is by intercalation. In addition to the base specificity, there are also dramatic differences in inhibition depending on the base sequence in the DNA template. Thus, ACM-13 preferentially inhibits the alternating double-stranded copolymers over the double-stranded homopolymers; e.g. poly [d(A-T)] is inhibited to a greater extent than poly dA · poly dT and poly [d(G-C)] is inhibited more than poly dG · poly dC. Since the inhibition by ACM-13 can be totally abolished when assayed in excess amount of DNA, this result suggests that ACM-B inhibition of RNA synthesis is solely on the DNA template (which is in support of the intercalation model), and has ruled out the possibility that ACM-B may also exert an inhibitory effect on the activity of RNA polymerase per se.  相似文献   

14.
We have performed a conformational analysis of DNA double helices poly(dA).poly(dT) with parallel directed backbone strands in heteronomic model frames. All possible models of base pairs and various mutual orientation of base pair and sugarphosphate backbones were checked. By the potential energy optimization the dihedral angles and helices parameters of stable conformations of parallel double polynucleotides were calculated. The dependences of conformational energy on the base pair structure were studied.  相似文献   

15.
Nucleosome reconstitution on plasmid-inserted poly(dA) . poly(dT).   总被引:30,自引:7,他引:23       下载免费PDF全文
Chromatin was reconstituted from core histones and recombinant plasmid DNAs carrying poly(dA) . poly(dT) inserts of various lengths. A 97-bp insert was found to occupy discrete and regularly-spaced positions on the edges of the nucleosome. This insert cannot, however, be entirely included due to a block in the center of the particle. In contrast, nucleosomes reconstitute on a shorter 20-bp insert. In this case, the insert shows a marked preference for the edges of the particle. Possible structural and physiological implications of these observations are discussed.  相似文献   

16.
The paper presents results obtained in conformational analysis of homopolymeric four-stranded poly(dT).poly(dA).poly(dA).poly(dT) DNA helices in which the pairs of strands with identical bases are parallel and have a two-fold symmetry axis. All possible models of base binding to yield a symmetric complex have been considered. The dihedral angles of sugar-phosphate backbones and helix parameters, which are consistent with the minima of conformational energy for four-stranded DNAs, have been determined using the results of optimization of conformational energy calculated at atom-atom approximation. Potential energy is shown to depend on the structure of base complexes and on the mutual orientation of unlike strands. Possible biological functions of four-stranded helices are discussed.  相似文献   

17.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

18.
The basic assumption of Dickerson and Kopka (J. Biomole. Str. Dyns. 2, 423, 1985) that the conformation of poly(dA).poly(dT) in solution is identical to the AT rich region of the single crystal structure of the Dickerson dodecamer is not supported by any experimental data. In poly(dA).poly(dT), NOE and Raman studies indicate that the dA and dT units are conformationally equivalent and display the (anti-S-type sugar)-conformation; incorporation of this nucleotide geometry into a double helix leads to a conventional regular B-helix in which the width of the minor groove is 8A. The derived structure is consistent with all available experimental data on poly(dA).poly(dT) obtained under solution conditions. In the crystal structure of the dodecamer, the dA and dT units have distinctly different conformations-dA residues adopt (anti, S-type sugar pucker), while dT residues belong to (low anti, N-type sugar pucker). These different conformations of the dA and dT units along with the large propeller twist can be accommodated in a double helix in which the minor groove is shrunk from 8A to less than 4A. In the conventional right handed B-form of poly(dA).poly(dT) with the 8A wide minor groove, netropsin has to bind asymmetrically along the dA strand to account for the NOE and chemical shift data and to generate a stereochemically sound structure (Sarma et al, J. Biomole. Str. Dyns. 2, 1085, 1985).  相似文献   

19.
The results of the search for low-energy conformations of poly(dA).poly(dT) and of the poly(dA).poly(dT) "complex" with the spine of hydration similar to that found by Dickerson and co-workers (Kopka, M.L., Fratini, A.V., Drew, H.R. and Dickerson, R.E. (1983) J. Mol. Biol. 163, 129-146) in the minor groove of the CGCGAATTCGCG crystals are described. It is shown that the existence of such a spine in the minor groove of poly(dA).poly(dT) is energetically favourable. Moreover, the spine of hydration makes the polynucleotide conformation similar to the poly(dA).poly(dT) structure in fibers and to the conformation of the central part of CGCGAATTCGCG in crystals; it also acquires features characteristic of the structure of poly(dA).poly(dT) and DNA oligo(dA)-tracts in solution. It is shown that the existence of the TpA step in conformations characteristic of the poly(dA).poly(dT) complex with the spine of hydration is energetically unfavourable (in contrast to the ApT step) and therefore this step should result in destabilization of the spine of hydration in the DNA minor groove. Thus, it appears that the spine of hydration as described by Dickerson and co-workers is unlikely to exist in the poly d(A-T).poly d(A-T) structure. The data obtained permit us to interpret a large body of experimental facts concerning the unusual structure and properties of poly(dA).poly(dT) and oligo(dA)-tracts in DNA both in fibers and in solution. The results provide evidence of the existence of the minor groove spine of hydration both in fibers and in solution on A/T tracts of DNA which do not contain the TpA step. The spine plays an active role in the formation of the anomalous conformation of these tracts.  相似文献   

20.
We have performed a conformational analysis of DNA double helices with parallel directed backbone strands connected with the second order symmetry axis being at the same time the helix axis. The calculations were made for homopolymers poly(dA).poly(dA), poly(dC).poly(dC), poly(dG) poly(dG), and poly(dT).poly(dT). All possible variants of hydrogen bonding of base pairs of the same name were studied for each polymer. The maps of backbone chain geometrical existence were constructed. Conformational and helical parameters corresponding to local minima of conformational energy of "parallel" DNA helices, calculated at atom-atom approximation, were determined. The dependence of conformational energy on the base pair and on the hydrogen bond type was analysed. Two major conformational advantageous for "parallel" DNA's do not depend much on the hydrogen-bonded base pair type were indicated. One of them coincided with the conformational region typical for "antiparallel" DNA, in particular for the B-form DNA. Conformational energy of "parallel" DNA depends on the base pair type and for the most part is similar to the conformational energy of "antiparallel" B-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号