首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified recD mutants of Salmonella typhimurium by their ability to support growth of phage P22 abc (anti-RecBCD) mutants, whose growth is prevented by normal host RecBCD function. As in Escherichia coli, the recD gene of S. typhimurium lies between the recB and argA genes at min 61 of the genetic map. Plasmids carrying the Salmonella recBCD+ genes restore ATP-dependent exonuclease V activity to an E. coli recBCD deletion mutant. The new Salmonella recD mutations (placed on this plasmid) eliminate the exonuclease activity and enable the plasmid-bearing E. coli deletion mutant to support growth of phage T4 gene 2 mutants. The Salmonella recD mutations caused a 3- to 61-fold increase in the ability of a recipient strain to inherit (by transduction) a large inserted element (MudA prophage; 38 kb). In this cross, recombination events must occur in the short (3-kb) sequences that flank the element in the 44-kb transduced fragment. The effect of the recD mutation depends on the nature of the flanking sequences and is likely to be greatest when those sequences lack a Chi site. The recD mutation appears to minimize fragment degradation and/or cause RecBC-dependent recombination events to occur closer to the ends of the transduced fragment. The effect of a recipient recD mutation was eliminated if the donor P22 phage expressed its Abc (anti-RecBC) function. We hypothesize that in standard (high multiplicity of infection) P22-mediated transduction crosses, recombination is stimulated both by Chi sequences (when present in the transduced fragment) and by the phage-encoded Abc protein which inhibits the host RecBCD exonuclease.  相似文献   

2.
The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.  相似文献   

3.
Plasmids that express the bacteriophage lambda gam gene or the P22 abc2 gene (with and without abc1) at controllable levels were placed in Escherichia coli and tested for effects on the activity of RecBCD. Like Gam, Abc2 inhibited the ATP-dependent exonuclease activity of RecBCD, apparently not by binding to DNA. However, Abc2-mediated inhibition was partial, while Gam-mediated inhibition was complete. Both Abc2 and Gam inhibited host system-mediated homologous recombination in a Chi-containing interval in the chromosome of a hybrid lambda phage; Abc2 inhibited it more strongly than Gam. Gam but not Abc2 spared a phage T4 gene 2 mutant from restriction by RecBCD; Abc2 exhibited weak sparing activity in combination with Abc1 and substantial activity in combination with both Abc1 and P22 homologous recombination function Erf. Either Gam or the combination of the lambda recombination functions Exo and Bet was sufficient to induce a mode of plasmid replication that produced linear multimers. The combination of Abc2, Abc1, and Erf also exhibited this activity. However, Erf was inactive, both by itself and in combination with Abc1; Abc2 had weak activity. These results indicate that Gam and Abc2 modulate the activity of RecBCD in significantly different ways. In comparison with lambda Gam, P22 Abc2 has a weak effect on RecBCD nuclease activity but a strong effect on its recombination-promoting activity.  相似文献   

4.
Recombination of bacteriophage lambda in recD mutants of Escherichia coli   总被引:25,自引:0,他引:25  
RecBCD enzyme is centrally important in homologous recombination in Escherichia coli and is the source of ExoV activity. Null alleles of either the recB or the recC genes, which encode the B and C subunits, respectively, manifest no recombination and none of the nuclease functions characteristic of the holoenzyme. Loss of the D subunit, by a recD mutation, likewise results in loss of ExoV activity. However, mutants lacking the D subunit are competent for homologous recombination. We report that the distribution of exchanges along the chromosome of Red-Gam-phage lambda is strikingly altered by recD null mutations in the host. When lambda DNA replication is blocked, recombination in recD mutant strains is high near lambda's right end. In contrast, recombination in isogenic recD+ strains is approximately uniform along lambda unless the lambda chromosome contains a chi sequence. Recombination in recD mutant strains is focused toward the site of action of a type II restriction enzyme acting in vivo on lambda. The distribution of exchanges in isogenic recD+ strains is scarcely altered by the restriction enzyme (unless the phage contains an otherwise silent chi). The distribution of exchanges in recD mutants is strongly affected by lambda DNA replication. The distribution of exchanges on lambda growing in rec+ cells is not influenced by DNA replication. The exchange distribution along lambda in recD mutant cells is independent of chi in a variety of conditions. Recombination in rec+ cells is chi influenced. Recombination in recD mutants depends on recC function, occurs in strains deleted for rac prophage, and is independent of recJ, which is known to be required for lambda recombination via the RecF pathway. We entertain two models for recombination in recD mutants: (i) recombination in recD mutants may proceed via double-chain break--repair, as it does in lambda's Red pathway and E. coli's RecE pathway; (ii) the RecBC enzyme, missing its D subunit, is equivalent to the wild-type, RecBCD, enzyme after that enzyme has been activated by a chi sequence.  相似文献   

5.
The repair of double strand breaks after gamma-irradiation in wild-type Escherichia coli lysogenic for lambda cI857 red3 is more efficient when lambda Gam protein is present. This phenomenon, called gam dependent radioresistance, requires the interaction of RecBCD enzyme and Gam protein. We compared cell survival after gamma-irradiation in wild-type and mutant lysogens with and without induction of Gam by transient heat treatment of the cells (6 min, 42 degrees C). The main conclusions are: (1) the RecBCD-Gam pathway of recombination repair is similar but not equivalent to RecBCD, a pathway operating in recD mutants; (2) the RecBCD-Gam pathway is dependent on recJ, recQ and recN gene products and it is proposed that the RecBCD-Gam complex has ability to load RecA protein onto single strand DNA.  相似文献   

6.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

7.
Dermić D  Zahradka D  Petranović M 《Genetics》2006,173(4):2399-2402
Recombination of lambda red gam phage in recD mutants is unaffected by inactivation of RecJ exonuclease. Since nucleases play redundant roles in E. coli, we inactivated several exonucleases in a recD mutant and discovered that 5'-3' exonuclease activity of RecJ and exonuclease VII is essential for lambda-recombination, whereas exonucleases of 3'-5' polarity are dispensable. The implications of the presented data on current models for recombination initiation in E. coli are discussed.  相似文献   

8.
Infection of Escherichia coli with phage T4 gene 2am was used to transport 3H-labeled linear duplex DNA into cells to follow its degradation in relation to the cellular genotype. In wild-type cells, 49% of the DNA was made acid soluble within 60 min; in recB or recC cells, only about 5% of the DNA was made acid soluble. Remarkably, in recD cells about 25% of the DNA was rendered acid soluble. The DNA degradation in recD cells depended on intact recB and recC genes. The degradation in recD cells was largely decreased by mutations in recJ (which eliminates the 5' single-strand-specific exonuclease coded by this gene) or xonA (which abolishes the 3' single-strand-specific exonuclease I). In a recD recJ xonA triple mutant, the degradation of linear duplex DNA was roughly at the level of a recB mutant. Results similar to those with the set of recD strains were also obtained with a recC++ mutant (in which the RecD protein is intact but does not function) and its recJ, xonA, and recJ xonA derivatives. The observations provide evidence for a recBC-dependent DNA-unwinding activity that renders unwound DNA susceptible to exonucleolytic degradation. It is proposed that the DNA-unwinding activity causes the efficient recombination, DNA repair, and SOS induction (after application of nalidixic acid) in recD mutants. The RecBC helicase indirectly detected here may have a central function in Chi-dependent recombination and in the recombinational repair of double-strand breaks by the RecBCD pathway.  相似文献   

9.
RecBCD enzyme has multiple activities including helicase, exonuclease and endonuclease activities. Mutations in the genes recB or recC, encoding two subunits of the enzyme, reduce the frequency of many types of recombinational events. Mutations in recD, encoding the third subunit, do not reduce recombination even though most of the activities of the RecBCD enzyme are severely reduced. In this study, the genetic dependence of different types of recombination in recD mutants has been investigated. The effects of mutations in genes in the RecBCD pathway (recA and recC) as well as the genes specific for the RecF pathway (recF, recJ, recN, recO, recQ, ruv and lexA) were tested on conjugational, transductional and plasmid recombination, and on UV survival. recD mutants were hyper-recombinogenic for all the monitored recombination events, especially those involving plasmids, and all recombination events in recD strains required recA and recC. In addition, unlike recD+ strains, chromosomal recombination events and the repair of UV damage to DNA in recD strains were dependent on one RecF pathway gene, recJ. Only a subset of the tested recombination events were affected by ruv, recN, recQ, recO and lexA mutations.  相似文献   

10.
The effects of the mutation pairs recB21 recF143 and recB21 uvrD152 on the frequency of genetic recombination were investigated in lambda phage-prophage crosses under homoimmune conditions. To prevent recombinants from being formed by the phage red system, these experiments were performed with phages and prophages carrying red and gam mutations. Both spontaneous and damage-induced recombination was measured, the phages being either undamaged or treated with trimethylpsoralen and 360-nm light to cross-link the phage DNA. Control and damaged phages were allowed to infect lysogenic host cells under conditions in which phage gene expression was repressed and phage DNA replication was blocked by lambda immunity. Although the double mutations recB21 recF143 and recB21 uvrD152 reduced recombination in Hfr by F- crosses to 0.3 to 0.02% of the wild-type controls, the presence of these pairs of mutations in the host lysogens had relatively little effect on the results of the phage-prophage crosses. In the latter system, recB21 recF143 reduced spontaneous and damaged-induced recombination by less than threefold whereas recB21 uvrD152 increased it to three times the wild-type level, the increase being attributable to the uvrD mutation. Evidently, the gene products of recB,C uvrD, and recF wee not needed for lambda phage-prophage recombination under repressed conditions.  相似文献   

11.
S Finkel  C Halling  R Calendar 《Gene》1986,46(1):65-69
The old gene product of the P2 prophage interferes with plaque formation by lambda wild type phage but allows lambda phages whose red and gam genes have been deleted to form small, visible plaques (the lambda Spi- phenotype). The old gene product also kills Escherichia coli recB or recC mutants. We have cloned the old gene into the high-copy-number plasmid pBR322, where it prevents plaque formation by both lambda Spi+ and lambda Spi- phages. We transferred a DNA fragment that carries the old gene to the low-copy-number plasmid pSC101 and found that lambda Spi- phages can be selected on strains that carry this plasmid. The plasmid-borne old gene kills E. coli recB mutants, providing a selection for old- mutants.  相似文献   

12.
R G Lloyd  C Buckman 《Biochimie》1991,73(2-3):313-320
The recD, recJ and recN genes of Escherichia coli K-12 have been shown to be involved in genetic recombination and DNA repair in this organism. Yet, mutation of any one of these genes does not seem to interfere much with the recovery of recombinants from conjugational crosses. Strains carrying all possible combinations of mutations inactivating these genes were constructed and examined for their recombination proficiency and sensitivity to UV light. The recD recJ and recJ recN double mutants are moderately sensitive to UV light and slightly deficient in recombination. A combination of mutations in all 3 genes produced strains that are very deficient in recombination (50- to 100-fold reduction) and strikingly sensitive to UV light. We conclude that these genes provide overlapping activities that compensate for one another in the single mutants. On the basis of these and other data, recombination genes are classified into 3 epistatic groups that define activities which function pre-synaptically or post-synaptically to promote genetic exchanges catalysed by RecA.  相似文献   

13.
A role for the RecF, RecJ, and SbcB proteins in the RecBCD-dependent recombination pathway is suggested on the basis of the effect of null recF, recJ, and sbcB mutations in Salmonella typhimurium on a "short-homology" P22 transduction assay. The assay requires recombination within short (approximately 3-kb) sequences that flank the selected marker and lie at the ends of the transduced fragment. Since these ends are subject to exonucleolytic degradation, the assay may demand rapid recombination by requiring that the exchange be completed before the essential recombining sequences are degraded. In this assay, recF, recJ, and sbcB null mutations, tested individually, cause a small decrease in recombinant recovery but all pairwise combinations of these mutations cause a 10- to 30-fold reduction. In a recD mutant recipient, which shows increased recombination, these pairwise mutation combinations cause a 100-fold reduction in recombinant recovery. In a standard transduction assay (about 20 kb of flanking sequence), recF, recJ, and sbcB mutations have a very small effect on recombinant frequency. We suggest that these three proteins promote a rate-limiting step in the RecBC-dependent recombination process. The above results were obtained with a lysogenic recipient strain which represses expression of superinfecting phage genomes and minimizes the contribution of phage recombination functions. When a nonlysogenic recipient strain is used, coinfecting phage genomes express functions that alter the genetic requirements for recombination in the short-homology assay.  相似文献   

14.
S. K. Kulkarni  F. W. Stahl 《Genetics》1989,123(2):249-253
gam mutants of phage lambda carrying long palindromes fail to form plaques on wild-type Escherichia coli but do grow on strains that are mutant in the sbcC gene. gam + lambda carrying the same palindrome grow on both hosts and on a host deleted for the recB, C and D genes. These results suggest that the Gam protein of lambda, known to interact also with E. coli's recBCD protein, can interact with the product of the sbcC gene.  相似文献   

15.
Recombination of bacteriophage phi X174 was effectively promoted when the Red function of lambda was supplied by either co-infection with lambda or induction of lambda lysogens. Mutations in red alpha and red beta genes of lambda abolished recombination nearly completely, whereas a mutation in gam gene reduced it only slightly. The Red-promoted recombination of phi X174 occurred in recA, recB, and polA mutants as well as in wild-type strains of Escherichia coli. It was further stimulated when phi X174 mutants were irradiated with UV light before infection.  相似文献   

16.
We describe a transposon insertion that reduces the efficiency of homologous recombination and DNA repair in Escherichia coli. The insertion, rec-258, was located between pyrE and dgo at min 82.1 on the current linkage map. On the basis of linkage to pyrE and complementation studies with the cloned rec+ gene, rec-258 was identified as an allele of the recG locus first reported by Storm et al. (P. K. Storm, W. P. M. Hoekstra, P. G. De Haan, and C. Verhoef, Mutat. Res. 13:9-17, 1971). The recG258 mutation confers sensitivity to mitomycin C and UV light and a 3- to 10-fold deficiency in conjugational recombination in wild-type, recB recC sbcA, and recB recC sbcB sbcC genetic backgrounds. It does not appear to affect plasmid recombination in the wild-type. A recG258 single mutant is also sensitive to ionizing radiation. The SOS response is induced normally, although the basal level of expression is elevated two- to threefold. Further genetic studies revealed that recB recG and recG recJ double mutants are much more sensitive to UV light than the respective single mutants in each case. However, no synergistic interactions were discovered between recG258 and mutations in recF, recN, or recQ. It is concluded that recG does not fall within any of the accepted groups of genes that affect recombination and DNA repair.  相似文献   

17.
The lambda Gam protein inhibits RecBCD binding to dsDNA ends   总被引:1,自引:0,他引:1  
Inactivation of the Escherichia coli RecBCD enzyme by the lambda Gam protein is an essential step that accompanies the lambda Red proteins for gene replacement using recombineering technology. It has been shown that Gam inhibits all the activities of RecBCD to the same extent. Nonetheless, some in vivo properties of recBCD mutants cannot be mimicked effectively by the expression of gam in vivo. An examination of the mechanism of Gam's inhibition of RecBCD was performed, and it was found that Gam inhibits the binding of RecBCD to double-stranded DNA ends, even if RecBCD is bound to DNA before its interaction with Gam. When ATP is added to the reaction to induce helicase activity, most of the reaction is inhibited by Gam, but residual amounts of unwinding are detected, despite a 40-fold excess of Gam/RecBCD. The same inhibitory effect of Gam was seen on RecBCD that had been modified by the P22 anti-RecBCD protein Abc2, though the inhibitory effect was diminished due to the tighter binding of Abc2-modified RecBCD to double-stranded DNA ends. These data suggest that cells containing Gam-expressing plasmids retain a small amount of uninhibited enzyme. Given the suspected instability of Gam in vivo, care must be taken when interpreting results from experiments containing Gam-inhibited RecBCD species. A revised model is proposed for Gam-induced radioresistance of E. coli to ionizing radiation.  相似文献   

18.
Illegitimate recombination between a prophage and adjacent bacterial DNA is the first step in the formation of specialized transducing phage. Such recombination is rare, but it is greatly enhanced by UV irradiation. We studied the mechanism of UV-induced illegitimate recombination by examining the effect of rec mutations on the frequency of lambda bio transducing phage and found that an Escherichia coli recJ mutation reduces it by 3- to 10-fold. In addition, the recombination hotspot, which accounts for approximately 60% of lambda bio transducing phages in wild-type bacteria, was not detected in the recJ mutant. Introduction of a RecJ overexpression plasmid into the recJ mutant recovered the recombination at the hotspot. These results indicate that the RecJ protein preferentially stimulates illegitimate recombination at the hotspot. Both the hotspot and the non- hotspot sites have short regions of homology, but only the hotspot sites contain common direct-repeat sequences. We propose a model based on the 5'-3' exonuclease activity of RecJ to explain the involvement of this protein in illegitimate recombination at the hotspot.  相似文献   

19.
V L Kalinin  R A Kreneva 《Genetika》1977,13(7):1268-1280
The survival of UV-irradiated phage ?105 on the lawns of several strains of Bacillus subtilis: wild type (strain 168) and 11 recombination-defficient mutants (recA1, recB2, recB3, recB19, recD27, recF15, recF18, recK4, recM13, recL16 and recO61) was investigated. All rec mutants have the phenotype Hcr+, i.e. normally host-cell reactivate UV-damaged phage. Small doses of UV-irradiation given to the wild type (rec+) cells increase the probability of survival of UV-irradiated ?105 phage (W-reactivation) and significantly enhance the frequency of c-mutants (W-mutagenesis). Maximal frequency of clear mutations in conditions of W-mutagenesis is 3-10(-3), i.e. is 100 times higher than the spontaneous background. Various rec mutations of host cells only diminish the level of W-reactivation but do not eliminate it completely. The most deficient in W-reactivation is recD27 mutant. Mutations recB2, B3, B19 and O61 have no effect on W-mutagenesis of UV-irradiated phage ?105 and on UV-induction of ?105, F15,F18 and L16 mutants. UV-irradiation of lysogenic cells of these mutants does not induce ?105 prophage.  相似文献   

20.
Summary DNA repair and recombination were investigated in a recD mutant of Escherichia coli which lacked the nuclease activity of the RecBCD enzyme. The resistance of this mutant to ultraviolet (UV) light was shown to be a function of recJ. A recD recJ double mutant was found to be more sensitive to UV radiation than a recB mutant, whereas recD and recJ single mutants were resistant. Recombination in conjugational crosses with Hfr donors was also reduced in recD recJ strains, but the effect was modest in comparison with the sensitivity to UV. Within certain limits, mutations in recF, recN, recO, lexA and ruv did not affect sensitivity to UV and recombination in a recD mutant any more than in a recD + strain. The possibility that recD and recJ provide overlapping activities, either of which can promote DNA repair and recombination in the absence of the other, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号