首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of interaction energy between an oligonucleotide and a DNA-binding ligand in the minor and major groove modes was made by use of restrained molecular dynamics. Distortion in DNA was found for the major groove mode whereas less significant changes for both ligand and DNA were detected for the minor groove binding after molecular dynamics simulation. The conformation of the ligand obtained from the major groove mode resembles that computed with the ligand soaked in water. The van der Waals contact energy was found to be as significant as electrostatic energy and more important for difference in binding energy between these two binding modes. The importance of van der Waals force in groove binding was supported by computations on the complex formed by the repressor peptide fragment from the bacteriophage 434 and its operator oligonucleotide.  相似文献   

2.
The condensation of free DNA into toroidal structures in the presence of multivalent ions and polypeptides is well known. Recent single molecule experiments have shown that condensation into toroids occurs even when the DNA molecule is subjected to tensile forces. Here we show that the combined tension and torsion of DNA in the presence of condensing agents dramatically modifies this picture by introducing supercoiled DNA as a competing structure in addition to toroids. We combine a fluctuating elastic rod model of DNA with phenomenological models for DNA interaction in the presence of condensing agents to compute the minimum energy configuration for given tension and end-rotations. We show that for each tension there is a critical number of end-rotations above which the supercoiled solution is preferred and below which toroids are the preferred state. Our results closely match recent extension rotation experiments on DNA in the presence of spermine and other condensing agents. Motivated by this, we construct a phase diagram for the preferred DNA states as a function of tension and applied end-rotations and identify a region where new experiments or simulations are needed to determine the preferred state.  相似文献   

3.
A large amount of experimental evidence is available on the effect of magnesium ions on the structure and stability of DNA double helix. Less is known, however, on how these ions affect the stability and dynamics of the molecule. The static time average pictures from X-ray structures or the quantum chemical energy minimized structures lack understanding of the dynamic DNA–ion interaction. The present work addresses these questions by molecular dynamics simulation studies on two DNA duplexes and their interaction with magnesium ions. Results show typical B-DNA character with occasional excursions to deviated states. We detected expected stability of the duplexes in terms of backbone conformations and base pair parameter by the CHARMM-27 force field. Ion environment analysis shows that Mg2+ retains the coordination sphere throughout the simulation with a preference for major groove over minor. An extensive analysis of the influence of the Mg2+ ion shows no evidence of the popular predictions of groove width narrowing by dipositive metal ion. The major groove atoms show higher occupancy and residence time compared to minor groove for magnesium, where no such distinction is found for the charge neutralizing Na+ ions. The determining factor of Mg2+ ion’s choice in DNA binding site evolves as the steric hindrance faced by the bulky hexahydrated cation where wider major groove gets the preference. We have shown that in case of binding of Mg2+ to DNA non electrostatic contributions play a major role.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:5  相似文献   

4.
We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA  相似文献   

5.
A series of octahedral and square-planar Ni(II) complexes have been synthesized from two different types of hydrazone ligands. The isolated complexes have been characterized by means of analytical and spectroscopic techniques. The structures of two of the complexes have been determined by single crystal X-ray diffraction study. The binding modes of the complexes with DNA and their ability to bind DNA have been investigated by UV-Vis absorption titration, ethidium bromide fluorescence displacement experiments, and viscometry measurements and cyclic voltammetry studies. The experimental results show that the mode of binding of the complexes to DNA is combination of different mode of interaction.  相似文献   

6.
We determined the free energy of DNA supercoiling as a function of the concentration of magnesium and sodium chloride in solution by measuring the variance of the equilibrium distribution of DNA linking number,<(DeltaLk)2>. We found that the free energy of supercoiling changed >1.5-fold over the range of ionic conditions studied. Comparison of the experimental results with those of computer simulations showed that the ionic condition dependence of<(DeltaLk)2>is due mostly to the change in DNA effective diameter, d, a parameter characterizing the electrostatic interaction of DNA segments. To make this comparison we determined values of d under all ionic conditions studied by measuring the probability of knot formation during random cyclization of linear DNA molecules. From the topoisomer distributions we could also determine the changes in DNA helical repeat, gamma, in mixed NaCl/MgCl2 solutions. Both gamma and d exhibited a complex pattern of changes with changing ionic conditions, which can be described in terms of competition between magnesium and sodium ions for binding to DNA.  相似文献   

7.
Many studies have elucidated structures and thermodynamics of complexes formed by different ligands with DNA. However, in most cases structural and free energy binding studies were not correlated with each other because of the problem of identifying which experimental free energy of binding corresponds to which experimental DNA-ligand structure. In the present work, Poisson-Boltzmann and solvent-accessible surface area methods were used to predict unknown modes of interaction between DNA and three different ligands: mitoxantrone and two pyrimidoacridine derivatives. In parallel, experimental measurements of binding free energy for the studied complexes were performed to compare experimental and calculated values. Our studies showed that the calculated values of free energy are only close to experimental data for some models of interaction between ligands and DNA. Based on this correlation, the most likely models of DNA-ligand complexes were postulated: (i) mitoxantrone and one derivative of pyrimidoacridine, both with two charged side chains, intercalate from the minor groove of DNA and bind with both chains in this groove; (ii) pyrimidoacridine, with only one side chain, very likely does not intercalate into DNA at all. Additionally, the non-electrostatic and electrostatic parts of the calculated binding free energy for the DNA-ligands studied are discussed.  相似文献   

8.
Luzhkov VB  Aqvist J 《FEBS letters》2001,495(3):191-196
We report results from automated docking and microscopic molecular dynamics simulations of the tetraethylammonium (TEA) complexes with KcsA. Binding modes and energies for TEA binding at the external and internal sides of the channel pore are examined utilising the linear interaction energy method. Effects of the channel ion occupancy (based on our previous results for the ion permeation mechanisms) on the binding energies are considered. Calculations show that TEA forms stable complexes at both the external and internal entrances of the selectivity filter. Furthermore, the effects of the Y82V mutation are evaluated and the results show, in agreement with experimental data, that the mutant has a significantly reduced binding affinity for TEA at the external binding site, which is attributed to stabilising hydrophobic interactions between the ligand and the tyrosines.  相似文献   

9.
The deformed (Dfd) and ultrabithorax (Ubx) homeoproteins regulate developmental gene expression in Drosophila melanogaster by binding to specific DNA sequences within its genome. DNA binding is largely accomplished via a highly conserved helix-turn-helix DNA-binding domain that is known as a homeodomain (HD). Despite nearly identical DNA recognition helices and similar target DNA sequence preferences, the in vivo functions of the two proteins are quite different. We have previously revealed differences between the two HDs in their interactions with DNA. In an effort to define the individual roles of the HD N-terminal arm and recognition helix in sequence-specific binding, we have characterized the structural details of two Dfd/Ubx chimeric HDs in complex with both the Dfd and Ubx-optimal-binding site sequences. We utilized hydroxyl radical cleavage of DNA to assess the positioning of the proteins on the binding sites. The effects of missing nucleosides and purine methylation on HD binding were also analyzed. Our results show that both the Dfd and Ubx HDs have similar DNA-binding modes when in complex with the Ubx-optimal site. There are subtle but reproducible differences in these modes that are completely interchanged when the Dfd N-terminal arm is replaced with the corresponding region of the Ubx HD. In contrast, we showed previously that the Dfd-optimal site sequence elicits a very different binding mode for the Ubx HD, while the Dfd HD maintains a mode similar to that elicited by the Ubx-optimal site. Our current methylation interference studies suggest that this alternate binding mode involves interaction of the Ubx N-terminal arm with the minor groove on the opposite face of DNA relative to the major groove that is occupied by the recognition helix. As judged by hydroxyl radical footprinting and the missing nucleoside experiment, it appears that interaction of the Ubx recognition helix with the DNA major groove is reduced. Replacing the Dfd N-terminal arm with that of Ubx does not elicit a complete interchange of the DNA-binding mode. Although the position of the chimera relative to DNA, as judged by hydroxyl radical footprinting, is similar to that of the Dfd HD, the missing nucleoside and methylation interference patterns resemble those of the Ubx HD. Repositioning of amino acid side-chains without wholesale structural alteration in the polypeptide appears to occur as a function of N-terminal arm identity and DNA-binding site sequence. Complete interchange of binding modes was achieved only by replacement of the Dfd N-terminal arm and the recognition helix plus 13 carboxyl-terminal residues with the corresponding residues of Ubx. The position of the N-terminal arm in the DNA minor groove appears to differ in a manner that depends on the two base-pair differences between the Dfd and Ubx-optimal-binding sites. Thus, N-terminal arm position dictates the binding mode and the interaction of the recognition helix with nucleosides in the major groove.  相似文献   

10.
Abstract

We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA.  相似文献   

11.
We have calculated the electronic energy loss of proton and α-particle beams in dry DNA using the dielectric formalism. The electronic response of DNA is described by the MELF-GOS model, in which the outer electron excitations of the target are accounted for by a linear combination of Mermin-type energy-loss functions that accurately matches the available experimental data for DNA obtained from optical measurements, whereas the inner-shell electron excitations are modeled by the generalized oscillator strengths of the constituent atoms. Using this procedure we have calculated the stopping power and the energy-loss straggling of DNA for hydrogen- and helium-ion beams at incident energies ranging from 10 keV/nucleon to 10 MeV/nucleon. The mean excitation energy of dry DNA is found to be I = 81.5 eV. Our present results are compared with available calculations for liquid water showing noticeable differences between these important biological materials. We have also evaluated the electron excitation probability of DNA as a function of the transferred energy by the swift projectile as well as the average energy of the target electronic excitations as a function of the projectile energy. Our results show that projectiles with energy ?100 keV/nucleon (i.e., around the stopping-power maximum) are more suitable for producing low-energy secondary electrons in DNA, which could be very effective for the biological damage of malignant cells.  相似文献   

12.
Ab initio quantum chemical (Gaussian82) and molecular mechanics (AMBER2.0) computational techniques are employed to investigate the interaction of two anions (formate an dimethylphosphate) and a central divalent metal cation (magnesium or calcium). These systems are models for the essential GDP binding unit of the G-proteins (e.g., EF-Tu or the ras oncogene proteins) and for protein/phospholipid interactions, both of which are mediated by divalent metal cations. Various levels of hydration are utilized to examine coordination of differences between magnesium and calcium ions. Two different orientations of formate and dimethyl phosphate in direct ion contact with a magnesium ion and two waters of hydration were energy minimized with both quantum and molecular mechanics techniques. The structures and energy differences between the two orientations determined by either of the computational techniques are similar. Magnesium ion has a strong propensity to assume six coordination whereas calcium ion preferentially assumes a coordination greater than six. Likewise, water molecules attached to magnesium ion are held more rigidly than those of calcium ion, thus calcium ion is more accommodating in the exchange of water for negative ligands.  相似文献   

13.
Sequences of four to six adenine residues, termed A-tracts, have been shown to produce curvature in the DNA double helix. A-tracts have been used extensively as reference standards to quantify bending induced by other sequences as well as by DNA binding proteins when they bind to their sites. However, the ability of an A-tract to serve as such a standard is hampered by the wide variation of values reported for the amount of bend conferred by an A-tract. One experimental condition that differs in these studies is the presence of divalent cation. To evaluate this effect, a new application of a topological method, termed rotational variant analysis, is used here to measure for the first time the effect of the presence of magnesium ion on the bend angle conferred by an A-tract. This method, which has the unique ability to measure a bend angle in the presence or absence of magnesium ion, demonstrates that magnesium ion markedly increases the bend angle. For example, when measured in a commonly used gel electrophoretic buffer, the bend angle conferred by a tract of six adenine residues increases from about 7 degrees in the absence of magnesium ion to 19 degrees in the presence of 3.9 mM magnesium ion. This quantitative demonstration of substantial magnesium ion dependence has several important implications. First, it explains discrepancies among bend values reported in various previous studies, particularly those employing gel electrophoretic versus other solution methods. In addition, these findings necessitate substantial revisions of the conclusions in a large number of studies that have used A-tract DNA as the bend angle reference standard in comparison measurements. Finally, any such future studies employing this comparison methodology will need to use the same sequence analyzed in the original measurements as well as replicate the original measurement conditions (e.g. ionic composition and temperature).  相似文献   

14.
15.
Drugs may interact with double stranded DNA via a variety of binding modes, each mode giving rise to a specific pharmacological function. Here we demonstrate the ability of single molecule force spectroscopy to discriminate between different interaction modes by measuring the mechanical properties of DNA and their modulation upon the binding of small molecules. Due to the unique topology of double stranded DNA and due to its base pair stacking pattern, DNA undergoes several well-characterised structural transitions upon stretching. We show that small molecule binding markedly affects these transitions in ways characteristic to the binding mode and that these effects can be detected at the level of an individual molecule. The minor groove binder berenil, the crosslinker cisplatin and the intercalator ethidium bromide are compared.  相似文献   

16.
I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure ‘adenine:cytosine-motif (AC-motif)’. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson–Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.  相似文献   

17.
DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Cα deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.  相似文献   

18.
A thermodynamic study on the interaction between magnesium ion and human growth hormone (hGH) was studied at 27 degrees C in NaCl solution (50 mM) using different techniques. Two techniques of ionmetry using a Mg2+selective membrane electrode and isothermal titration calorimetry were applied to obtain the binding isotherm for hGHMg2+; results obtained by both techniques were found to be in good agreement. There is a set of three identical and noninteracting binding sites for magnesium ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 46 microM and -17.7 kJ/mol, respectively. Temperature scanning UV-visible spectroscopy was applied to elucidate the effect of Mg2+ binding on the protein stability, and circular dichroism (CD) spectroscopy was used to show the structural change of hGH due to the metal ion interaction. Magnesium ion binding increased the protein thermal stability by increasing the alpha-helix content as well as decreasing both beta and random coil structures. However, the secondary structural change of the protein returns to its native form, including a small change in the tertiary structure, in high concentrations of magnesium ion.  相似文献   

19.
Recent experimental advances have shown that enzymes are flexible molecules, and point to a direct link between dynamics and catalysis. Movements span a wide time range, from nano- to milli-seconds. In this paper we introduce two aspects of enzyme flexibility that are treated with two appropriate techniques. First, transition path sampling is used to obtain an unbiased picture of the transition state ensemble in chorismate mutase, as well as its local flexibility and the energy flow during the chemical step. Second, we consider the binding and release of substrates in L-rhamnulose-1-phosphate aldolase. We have calculated the normal modes of the enzyme with the elastic network model. The lowest frequency modes generate active site deformations that change the coordination number of the catalytic zinc ion. The coordination lability of zinc allows the binding and release of substrates. Substitution of zinc by magnesium blocks the exchange of ligands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Blanchet J  Lin SX  Zhorov BS 《Biochemistry》2005,44(19):7218-7227
Crystallographic studies of ligand-protein complexes reveal most preferable ligand binding modes, but do not show less populated modes that may contribute to measurable biochemical and biophysical characteristics of the complexes. In some cases, a ligand may bind a protein in essentially different modes. An example is 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), a steroidogenic enzyme that catalyzes reduction of estrone to estradiol in gonadal and peripheral tissues. The enzyme exhibits a high specificity for estrogens which bind with their C17 atom in the proximity of the NADP(H) cofactor. 17Beta-HSD1 can also bind androgens, but in a reverse binding mode, in which the steroid C3 atom is the closest carbon atom to the cofactor. Here we map the interaction energy of estradiol and dihydrotestosterone binding to 17beta-HSD1. Positions and orientations of the steroids in the ligand-binding tunnel were sampled systematically, and at each combination of these generalized coordinates, the energy was Monte Carlo minimized. The computed maps show energy minima corresponding to the X-ray structures and predict alternative binding modes, in particular, an upside-down orientation in which steroidal face alpha is exposed to protein residues that normally interact with face beta. The methodology can be used for mapping ligand-receptor interactions in various systems, for example, in ion channels and G-protein-coupled receptors that bind elongated ligands in confined space between transmembrane helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号