首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational β-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The β-lysyl EF-P modification pathway is conserved among only 26–28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl–EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli β-lysyl–EF-P. The possible reasons for the unique requirement of rhamnosyl–EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others.  相似文献   

2.
The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP) in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.  相似文献   

3.
PilO is an oligosaccharyl transferase (OTase) that catalyzes the O-glycosylation of Pseudomonas aeruginosa 1244 pilin by adding a single O-antigen repeating unit to the β carbon of the C-terminal residue (a serine). While PilO has an absolute requirement for Ser/Thr at this position, it is unclear if this enzyme must recognize other pilin features. To test this, pilin constructs containing peptide extensions terminating with serine were tested for the ability to support glycosylation. It was found that a 15-residue peptide, which had been modeled on the C-proximal region of strain 1244 pilin, served as a PilO substrate when it was expressed on either group II or group III pilins. In addition, adding a 3-residue extension culminating in serine to the C terminus of a group III pilin supported PilO activity. A protein fusion composed of strain 1244 pilin linked at its C terminus with Escherichia coli alkaline phosphatase (which, in turn, contained the above-mentioned 15 amino acids at its C terminus) was glycosylated by PilO. E. coli alkaline phosphatase lacking the pilin membrane anchor and containing the 15-residue peptide was also glycosylated by PilO. Addition of the 3-residue extension did not allow glycosylation of either of these constructs. Site-directed mutagenesis of strain 1244 pilin residues of the C-proximal region common to the group I proteins showed that this structure was not required for glycosylation. These experiments indicate that pilin common sequence is not required for glycosylation and show that nonpilin protein can be engineered to be a PilO substrate.Colonization and dissemination of the opportunistic pathogen Pseudomonas aeruginosa rely to a large extent on the ability of this organism to produce functional type IV pili (26). These protein fibers, which radiate from the cell pole, are adhesion factors (51), mediate a form of surface translocation referred to as twitching motility (10, 37), and are important in biofilm formation (39). The pili of this organism are primarily composed of a monomeric subunit called pilin (PilA). Type IV pili can be differentiated into two classes (a or b) on the basis of the PilA sequence and structure (23). Although they display considerable sequence variation, the majority of the type IVa pilins of P. aeruginosa can be placed into one of three groups on the basis of primary structure and antigenicity, as well as by the presence of auxiliary pilin genes found immediately downstream from pilA (8, 33). We previously determined that pilin from P. aeruginosa 1244, which belongs to group I (8), contained an O-antigen repeating unit covalently attached to the β-hydroxyl group of a serine residing at the C terminus of this protein (7). While the specific physiological role of the pilin glycan in this organism is not clear, the presence of this saccharide influences pilus hydrophobicity and has a pronounced effect on virulence, as determined in a mouse respiratory model (47). The metabolic origin of the pilin saccharide is the O-antigen biosynthetic pathway (14), and its attachment is catalyzed by an oligosaccharyl transferase (OTase) called PilO (6). Specific regions of this cytoplasmic membrane protein necessary for glycosylation activity have been identified (42). Topological studies of PilO have shown that these regions face the periplasm, suggesting that pilin glycosylation takes place in this chamber (42). Here the glycan substrate is the O-antigen repeating unit covalently linked to the undecaprenol carrier lipid.PilO has a very relaxed glycan substrate specificity, as indicated by the evidence that it is able to utilize a number of structurally dissimilar O-antigen repeating units as substrate (14), and requires only features of the reducing end sugar to carry out pilin glycosylation (28). WaaL, the enzyme that transfers polymerized O antigen to core lipid A, from Escherichia coli also has a similar broad glycan specificity (19). Recent studies (18) provided evidence that PglL, an OTase of Neisseria meningitidis, recognized only the carrier lipid and was able to attach a variety of saccharides to the pilin of this organism. Although the glycan specificity of PilO is relaxed, this enzyme will not attach other carrier lipid-bound saccharides, such as the peptidoglycan subunit or polymerized O-antigen repeating unit, to pilin. This is indicated by the absence of pilins with increased mass in O-antigen-negative mutants or the production of multiple pilin sizes in the wild-type strain (6).In vivo analysis of mutagenized P. aeruginosa 1244 pilin showed that the C-terminal serine of this protein was a major pilin glycosylation recognition feature of PilO (27). In addition, modification (substitution of the C-terminal amino acid with a 3-residue sequence terminating in serine) of a group II pilin allowed PilO-dependent attachment of the O-antigen repeating unit (27). While these results suggested that the preponderance of pilin structural information was not required for glycosylation, it was not clear whether regions common among the P. aeruginosa pilins were needed. In the present study three types of experiments were carried out in order to answer this question. First, the glycosylation site was extended away from the pilin surface with the addition of a 15-residue peptide which terminates with serine. Second, an engineered periplasmic protein containing the glycosylation residue at its C terminus was fused with pilin and tested for PilO activity. Finally, this periplasmic protein containing no pilin common region was constructed and tested. Evidence presented in this paper suggests that PilO requires only the glycosylation target residue.The work presented also indicated that, in addition to pilins, nonpilin protein free in the periplasm or anchored to the cytoplasmic membrane could be engineered so as to serve as a PilO substrate. These results suggest that a wide range of pilins and nonpilin proteins can be engineered to serve as substrate for glycosylation, a finding that would potentially have practical value, particularly in the area of vaccine construction. In addition to elucidating the protein specificity of the PilO system, the present work determined that the peptide extension used can supply functional epitope information to the modified protein, in addition to providing a site for glycosylation. Altogether, the results presented suggest that engineering of pilins and nonpilin proteins for the biological generation of protein-peptide-saccharide constructs is a potentially important strategy in vaccine design.  相似文献   

4.
Natural transformation is the widespread biological process by which “competent” bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or “transformed”. To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence) watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.  相似文献   

5.
The two-partner secretion (TPS) systems of Gram-negative bacteria consist of a large secreted exoprotein (TpsA) and a transporter protein (TpsB) located in the outer membrane. TpsA targets TpsB for transport across the membrane via its ∼30-kDa TPS domain located at its N terminus, and this domain is also the minimal secretory unit. Neisseria meningitidis genomes encode up to five TpsAs and two TpsBs. Sequence alignments of TPS domains suggested that these are organized into three systems, while there are two TpsBs, which raised questions on their system specificity. We show here that the TpsB2 transporter of Neisseria meningitidis is able to secrete all types of TPS domains encoded in N. meningitidis and the related species Neisseria lactamica but not domains of Haemophilus influenzae and Pseudomonas aeruginosa. In contrast, the TpsB1 transporter seemed to be specific for its cognate N. meningitidis system and did not secrete the TPS domains of other meningococcal systems. However, TpsB1 did secrete the TPS2b domain of N. lactamica, which is related to the meningococcal TPS2 domains. Apparently, the secretion depends on specific sequences within the TPS domain rather than the overall TPS domain structure.  相似文献   

6.
A simple radioactive assay system is elaborated for the measurement of dihyrofolate synthetase activity in Escherichia coli. It is also applicable to Neisseria gonorrhoeae and N. meningitidis extracts. Eight oxidized and reduced pteroate analogs have been examined for inhibitory activity. The most active inhibitor was dihydrohomopteroic acid followed by dihydro-10-thiopteroic acid, dihydrofolic acid, and dihydroisopteroic acid. The enzyme appears to be incapable of binding with substrate and any of the inhibitors in their oxidized forms.  相似文献   

7.
Pili (type IV fimbriae) of Neisseria meningitidis are glycosylated by the addition of O-linked sugars. Recent work has shown that PglF, a protein with homology to O-antigen 'flippases', is required for the biosynthesis of the pilin-linked glycan and suggests pilin glycosylation occurs in a manner analogous to the wzy-dependent addition of O-antigen to the core-LPS. O-Antigen ligases are crucial in this pathway for the transfer of undecraprenol-linked sugars to the LPS-core in Gram-negative bacteria. An O-antigen ligase homologue, pglL, was identified in N. meningitidis. PglL mutants showed no change in LPS phenotypes but did show loss of pilin glycosylation, confirming PglL is essential for pilin O-linked glycosylation in N. meningitidis.  相似文献   

8.
Membrane preparations from developing cotyledons of red kidney bean (Phaseolus vulgaris L.) transferred radioactive mannose from GDP-mannose (U-[14C]mannose) to endogenous acceptor proteins. The transfer was inhibited by the antibiotic tunicamycin, suggesting the involvement of lipidoligosaccharide intermediates typical of the pathway for glycosylation of asparagine residues. This was supported by the similarity of the linkage types of radioactive mannose in lipid-oligosaccharide and glycoprotein products; both contained labeled 2-linked mannose, 3,6-linked and terminal mannose typical of glycoprotein “core” oligosaccharides. As expected for “core” glycosylation, the transfer of labeled N-acetylglucosamine (GlcNAc) from UDP-GlcNAc (6-[3H]GLcNAc) to 4-linkage in endogenous glycoproteins could also be demonstrated. However, most of the radioactive GlcNAc was incorporated into terminal linkage, in a reaction insensitive to tunicamycin. The proteins receiving “core” oligosaccharide in vitro were heterogeneous in size, in contrast to those receiving most of the GlcNAc (which chiefly comprised the seed reserve-proteins phaseolin and phytohemagglutinin). It is suggested that following “core” glycosylation, single GlcNAc residues are attached terminally to the oligosaccharides of these seed proteins, without the involvement of lipid-linked intermediates. Phaseolin from mature seeds does not possess a significant amount of terminal GlcNAc and so it is possible that these residues are subsequently removed in a processing event.  相似文献   

9.
Bacterial capsular polysaccharides and lipopolysaccharides are well-established ligands of innate and adaptive immune effectors and often exhibit structural and antigenic variability. Although many surface-localized glycoproteins have been identified in bacterial pathogens and symbionts, it not clear if and how selection impacts associated glycoform structure. Here, a systematic approach was devised to correlate gene repertoire with protein-associated glycoform structure in Neisseria species important to human health and disease. By manipulating the protein glycosylation (pgl) gene content and assessing the glycan structure by mass spectrometry and reactivity with monoclonal antibodies, it was established that protein-associated glycans are antigenically variable and that at least nine distinct glycoforms can be expressed in vitro. These studies also revealed that in addition to Neisseria gonorrhoeae strain N400, one other gonococcal strain and isolates of Neisseria meningitidis and Neisseria lactamica exhibit broad-spectrum O-linked protein glycosylation. Although a strong correlation between pgl gene content, glycoform expression, and serological profile was observed, there were significant exceptions, particularly with regard to levels of microheterogeneity. This work provides a technological platform for molecular serotyping of neisserial protein glycans and for elucidating pgl gene evolution.It is now well established that protein glycosylation based on both N- and O-linked modifications occurs in bacterial species. In N-linked systems exemplified by the system in Campylobacter jejuni, large numbers of proteins that are translocated to the periplasm are glycosylated based on the presence of sequon elements and asparagine-targeting oligosaccharyltransferases related to those that operate in eukaryotes (21, 36, 69, 73). Two O-linked systems associated with covalent modification of type IV pilin subunits in pathogenic Neisseria species and in selected strains of Pseudomonas aeruginosa have been particularly well characterized (2, 16, 46-48, 54). The latter systems are remarkably similar to the N-linked system characterized in C. jejuni in that oligosaccharides are synthesized cytoplasmically as lipid-linked precursors that are then flipped into the periplasm. Protein-targeting oligosaccharyltransferases structurally related to the WaaL family of O-antigen ligases then transfer the oligosaccharides to protein substrates (2, 18, 49). The similarities between these N- and O-linked systems are perhaps best illustrated by genetic and functional interactions between components of the C. jejuni oligosaccharide biosynthetic machinery and elements of the neisserial pilin glycosylation pathway (2, 18). In contrast, the mechanisms operating in other bacterial O-linked systems are not completely understood yet, and there appears to be considerable diversity in the mechanisms of oligosaccharide synthesis, transfer of the glycan to the protein, and the cellular compartment in which glycan addition takes place. Prime examples of this diversity include the glycosylation of major subunits of S-layers (53), flagella (40), and type IV pili, as well as nonpilus adhesins, such as autotransporters (7, 51) and a family of serine-rich proteins identified in Gram-positive species (72). Recently, the pilin glycosylation system in the Gram-negative species Neisseria gonorrhoeae (the etiological agent of gonorrhea) was shown to be a general O-linked system in which a large set of structurally distinct periplasmic proteins undergo glycosylation (64). Likewise, a general O-linked glycosylation system targeting periplasmic and surface-exposed proteins has been documented in Bacteroides fragilis (19). In addition, an increasing number of lipoproteins in Mycobacterium tuberculosis have been found to be O glycosylated, and current evidence suggests that a single glycosylation pathway operates with these proteins (50).The large number of bacterial protein glycosylation systems strongly suggests that these systems are advantageous and affect fitness. In fact, mutants with mutations in the general glycosylation systems of C. jejuni and B. fragilis are defective in mucosal colonization, although the fundamental basis for the observations is unclear (19, 23). In some cases, defects in protein stability and trafficking have been documented. Examples of the latter have been reported for the Aida and Ag43 autotransporter adhesins of Escherichia coli and the serine-rich Fap1 streptococcal adhesin (11, 35, 72). In these cases, the glycosylation status appears to influence protein integrity along with intracellular or membrane trafficking events.Glycosylation may also influence protein structure and function or activity at the extracellular level. In the context of host-symbiont and host-pathogen interactions, bacterial cell surface polysaccharides and glycolipid glycans are well-established targets of both innate and adaptive immune responses (13, 61). However, the potential influence of protein-linked carbohydrate on immune recognition and signaling is only beginning to be investigated. Given the well-established effect of conjugating protein to carbohydrate on glycan-related immunogenicity, glycoproteins could be predicted to promote a robust T-cell-dependent antibody response directed toward glycan epitopes. In line with this, immunization of mice with O-glycosylated type IV pilin from P. aeruginosa strain 1244 (which bears a single repeat unit of the O antigen, the dominant component of its lipopolysaccharide) resulted in protection against challenge with immunological specificity for the O-polysaccharide (27). In addition, structural heterogeneity of carbohydrate modifications has been shown to affect the serospecificity of Campylobacter flagellins (41). With regard to innate immunity, the N-linked protein glycans of C. jejuni have been shown to influence interleukin-6 production by human dendritic cells via interaction with the macrophage galactose-type lectin (MGL) (62). Also, flagellin glycosylation of the phytopathogenic bacteria Pseudomonas syringae pv. glycinea and P. syringae pv. tomato appears to play an important role in hypersensitive cell death in nonhost plants and in host cell recognition (56, 57). Similarly, the flagellin glycosylation status in P. aeruginosa influences proinflammatory responses in human cell cultures (63).Studies of O-linked flagellar glycosylation in P. aeruginosa, C. jejuni, and a number of Gram-positive species have revealed considerable variability in genomic glycosylation islands (40). In addition to differences in gene content, some genes localized in these loci are subject to phase (on-off) variation involving slipped-strand mispairing events. Similar findings have been obtained for the O-linked glycosylation system in N. gonorrhoeae and a related system in Neisseria meningitidis (2, 4, 29, 48). These observations strongly suggest that protein-associated glycans are positively selected. However, attempts to elucidate the evolutionary processes impacting these systems are complicated by difficulties in connecting genotype with phenotype. For example, predicting enzymatic activities of components involved in glycan biosynthesis based on the sequence alone is notoriously difficult. Therefore, glycosylation-related functions are characterized best by using purified components in in vitro assays. Moreover, despite recent advances in mass spectrometric (MS) and nuclear magnetic resonance (NMR) technologies, glycoprotein structural analysis is still arduous, particularly when proteins are expressed at low levels. Thus, current methodologies are not optimized for studies of large numbers of strains and mutants.The broad-spectrum O-linked protein glycosylation system of N. gonorrhoeae is particularly well characterized with regard to the genetics of oligosaccharide biosynthesis, modification, and transfer to protein via the PglO/PglL oligosaccharyltransferase. As shown using strain N400, combined genetic and MS analyses, including interspecies complementation, have revealed that this system (designated the pgl [protein glycosylation] system) is remarkably similar to the N-linked system of C. jejuni with respect to the use of a peptide-proximal 2,4-diacetamido-2,4,6-trideoxyhexose (DATDH) sugar and related biosynthetic pathways for generating lipid-linked glycan substrates (2, 18, 39). The lipid-linked DATDH sugar can be further converted successively into hexose (Hex)-DATDH disaccharide and Hex-Hex-DATDH trisaccharide forms by the PglA and PglE glycosyltransferases, respectively (2). The hexoses in both the di- and trisaccharide forms can also undergo O acetylation by the PglI enzyme (2, 70). As pglA, pglE, and pglI are each predicted to be subject to phase variation in some backgrounds, strains have the potential to express five distinct glycoforms (2, 4, 29, 48, 70). A similar system operates in N. meningitidis strain c311, although to date only pilin and the AniA nitrite reductase proteins have been shown to be glycosylated (37). Pioneering analyses of pilin from this strain identified a trisaccharide with a terminal alpha-1-4-linked digalactose moiety attached to DATDH (54). Interestingly, nearly one-half of N. meningitidis isolates are reported to have a unique allele of pglB designated pglB2 associated with synthesis of a proximal glyceramido-acetamido trideoxyhexose (GATDH) rather than DATDH (10). In addition, some strains of both N. gonorrhoeae and N. meningitidis have been reported to contain additional genes predicted to encode glycosyltransferases linked to the core locus that includes the pglF, pglB, pglC, and pglD genes (32, 48). Thus, it appears that the number of protein-associated glycans may be far greater than currently perceived. The genus Neisseria also includes a number of related species that colonize humans, including Neisseria lactamica, which is closely related to N. gonorrhoeae and N. meningitidis but is rarely associated with disease (24), as well as other, more divergent commensal species. An examination of recently available genome sequences of these nonpathogenic species revealed that they contain open reading frames (ORFs) whose products share high levels of amino acid identity with many of the protein glycosylation components found in N. gonorrhoeae and N. meningitidis and with many of the N. gonorrhoeae proteins targeted for glycosylation. However, protein glycosylation has not been documented in any of these species yet.Here, we developed a systematic approach for elucidating intra- and interstrain glycan diversity and its genetic basis in neisserial O-linked glycans by employing serotyping, mass spectrometric analyses, and genetically defined recombinant backgrounds. We then used these tools to demonstrate that protein-associated glycans are antigenically variable and that isolates of N. meningitidis and N. lactamica also exhibit broad-spectrum O-linked protein glycosylation.  相似文献   

10.
11.
肠炎沙门菌(Salmonella enteritidis)是一种重要的人兽共患病原菌,在对该菌感染的预防与控制上一直存在困难,而糖蛋白疫苗的出现为其预防提供了新的思路。对于糖蛋白的合成,一般采用传统的化学交联方法,该法制备流程烦琐、生产成本高。因此,探索经济且稳定的生物合成方法非常必要。为了实现生物法合成肠炎沙门菌糖蛋白,本研究利用CRISPR/Cas9方法构建肠炎沙门菌waa L基因缺失株SEΔwaa L,使用银染的方法检测细菌外膜脂多糖(lipopolysaccharide,LPS)的合成情况。使用环形PCR方法构建了表达寡糖转移酶PglL、重组铜绿假单胞菌的外毒素(recombinant Pseudomonas aeruginosa exotoxin A,r EPA)和霍乱毒素B亚单位(cholera toxin B subunit,CTB)的表达质粒,并分别在rEPA的N端和CTB的C端加入了PilE;糖基化位点序列。将重组质粒转化到SE ΔwaaL中,诱导表达后通过Western blotting方法对糖蛋白的合成进行验证,并通过镍柱(Ni-NTA)对糖蛋白进行纯化。结果表明,waaL基因的缺失阻断了肠炎沙门菌LPS正常合成,在该缺失株中rEPA和CTB蛋白均可成功表达。此外,在表达寡糖转移酶PglL的情况下,rEPA和CTB发生了明显的糖基化,其糖基化部分为肠炎沙门菌O抗原多糖。本研究结果证明肠炎沙门菌缺失waaL基因后,在寡糖转移酶PglL的作用下可以将自身O抗原多糖链共价连接到载体蛋白rEPA和CTB上,形成糖蛋白,为生物法合成肠炎沙门菌糖蛋白的研究奠定了基础。  相似文献   

12.
The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for α-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core.  相似文献   

13.
Aerosols of microorganisms were tested for particle size by use of an Andersen sampler. Mycoplasma aerosols had an average count median diameter (CMD) of 2.1 ± 0.5 μ. Staphylococcus aureus L forms gave an average CMD of 4.6 ± 1.7 μ; the diphtheroid L form, a CMD of 3.4 ± 0.3 μ. Escherichia coli had a CMD of 5.4 ± 2.5 μ; Neisseria sicca, 3.3 ± 0.5 μ; N. meningitidis, 3.4 ± 0.2 μ. S. aureus ATCC 6538, the parent strain of the L form, yielded a CMD of 3.9 ± 1.2 μ. Candida albicans gave an average CMD of 5.9 ± 1.4 μ. All organisms tested survived aerosolizing and could be recovered in viable form for at least 1 hr. Ultraviolet radiation at 2,537 A destroyed the bacteria and mycoplasmas instantaneously, and destroyed 87% of the L forms of S. aureus, 69% of the diphtheroid L form, and 98% of the C. albicans cells. After irradiation, viable particles of the L form and C. albicans aerosols were consistently larger, indicating that clumping led to survival. Submicron size particles were found in aerosols of all species tested except C. albicans.  相似文献   

14.
Innate immune surveillance in the blood is executed mostly by circulating monocytes, which recognise conserved bacterial molecules such as peptidoglycan and lipopolysaccharide. Toll-like receptors (TLR) play a central role in microbe-associated molecular pattern detection. Here, we compared the differences in TLR expression and cytokine production after stimulation of peripheral blood cells with heat-killed Gram-negative and Gram-positive human pathogens Neisseria meningitidis, Escherichia coli, Staphylococcus aureus and Streptococcus pneumoniae. We found that TLR2 expression is up-regulated on monocytes after stimulation with S. aureus, S. pneumoniae, E. coli and N. meningitidis. Moreover, TLR2 up-regulation was positively associated with increasing concentrations of Gram-positive bacteria, whereas higher concentrations of Gram-negative bacteria, especially E. coli, caused a milder TLR2 expression increase compared with low doses. Cytokines were produced in similar dose-dependent profiles regardless of the stimulatory pathogen; however, Gram-negative pathogens induced higher cytokine levels than Gram-positive ones at same concentrations. These results indicate that Gram-positive and Gram-negative bacteria differ in their dose-dependent patterns of induction of TLR2 and TLR4, but not in cytokine expression.  相似文献   

15.
Neisseria meningitidis is a pathogenic bacterium responsible for meningitis. The mechanisms underlying the control of Na+ transmembrane movement, presumably important to pathogenicity, have been barely addressed. To elucidate the function of the components of the Na+ transport system in N. meningitidis, an open reading frame from the genome of this bacterium displaying similarity with the NhaE type of Na+/H+ antiporters was expressed in Escherichia coli and characterized for sodium transport ability. The N. meningitidis antiporter (NmNhaE) was able to complement an E. coli strain devoid of Na+/H+ antiporters (KNabc) respecting the ability to grow in the presence of NaCl and LiCl. Ion transport assays in everted vesicles prepared from KNabc expressing NmNhaE from a plasmid confirmed its ability to translocate Na+ and Li+. Here is presented the characterization of the first NhaE from a pathogen, an important contribution to the comprehension of sodium ion metabolism in this kind of microorganisms.  相似文献   

16.
Mobile group II introns (“targetrons”) can be programmed for insertion into virtually any desired DNA target with high frequency and specificity. Here, we show that targetrons expressed via an m-toluic acid-inducible promoter from a broad-host-range vector containing an RK2 minireplicon can be used for efficient gene targeting in a variety of gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. Targetrons expressed from donor plasmids introduced by electroporation or conjugation yielded targeted disruptions at frequencies of 1 to 58% of screened colonies in the E. coli lacZ, P. aeruginosa pqsA and pqsH, and A. tumefaciens aopB and chvI genes. The development of this broad-host-range system for targetron expression should facilitate gene targeting in many bacteria.  相似文献   

17.
Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the “E. coli”- and “Burkholderia-type”. CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae.  相似文献   

18.
The ability to acquire iron from various sources has been demonstrated to be a major determinant in the pathogenesis of Neisseria meningitidis. Outside the cells, iron is bound to transferrin in serum, or to lactoferrin in mucosal secretions. Meningococci can extract iron from iron-loaded human transferrin by the TbpA/TbpB outer membrane complex. Moreover, N. meningitidis expresses the LbpA/LbpB outer membrane complex, which can extract iron from iron-loaded human lactoferrin. Iron transport through the outer membrane requires energy provided by the ExbB-ExbD-TonB complex. After transportation through the outer membrane, iron is bound by periplasmic protein FbpA and is addressed to the FbpBC inner membrane transporter. Iron-complexing compounds like citrate and pyrophosphate have been shown to support meningococcal growth ex vivo. The use of iron pyrophosphate as an iron source by N. meningitidis was previously described, but has not been investigated. Pyrophosphate was shown to participate in iron transfer from transferrin to ferritin. In this report, we investigated the use of ferric pyrophosphate as an iron source by N. meningitidis both ex vivo and in a mouse model. We showed that pyrophosphate was able to sustain N. meningitidis growth when desferal was used as an iron chelator. Addition of a pyrophosphate analogue to bacterial suspension at millimolar concentrations supported N. meningitidis survival in the mouse model. Finally, we show that pyrophosphate enabled TonB-independent ex vivo use of iron-loaded human or bovine transferrin as an iron source by N. meningitidis. Our data suggest that, in addition to acquiring iron through sophisticated systems, N. meningitidis is able to use simple strategies to acquire iron from a wide range of sources so as to sustain bacterial survival.  相似文献   

19.
In sequenced genomes of prokaryotes, anomalous DNA (aDNA) can be recognized, among others, by atypical clustering of dinucleotides. We hypothesized that atypical clustering of hexameric endonuclease recognition sites in aDNA allows the specific isolation of anomalous sequences in vitro. Clustering of endonuclease recognition sites in aDNA regions of eight published prokaryotic genome sequences was demonstrated. In silico digestion of the Neisseria meningitidis MC58 genome, using four selected endonucleases, revealed that out of 27 of the small fragments predicted (<5 kb), 21 were located in known genomic islands. Of the 24 calculated fragments (>300 bp and <5 kb), 22 met our criteria for aDNA, i.e. a high dinucleotide dissimilarity and/or aberrant GC content. The four enzymes also allowed the identification of aDNA fragments from the related Z2491 strain. Similarly, the sequenced genomes of three strains of Escherichia coli assessed by in silico digestion using XbaI yielded strain-specific sets of fragments of anomalous composition. In vitro applicability of the method was demonstrated by using adaptor-linked PCR, yielding the predicted fragments from the N.meningitidis MC58 genome. In conclusion, this strategy allows the selective isolation of aDNA from prokaryotic genomes by a simple restriction digest–amplification–cloning–sequencing scheme.  相似文献   

20.
Immunization of mice with recombinant IgA1 protease of Neisseria meningitidis or several structural derivatives thereof protects the animals infected with a variety of deadly pathogens, including N. meningitidis serogroups A, B, and C and 3 serotypes of Streptococcus pneumonia. In sera of rabbits immunized with inactivated pneumococcal cultures, antibodies binding IgA1-protease from N. meningitidis serogroup B were detected. Thus, the cross-reactive protection against meningococcal and pneumococcal infections has been demonstrated in vivo. Presumably it indicates the presence of common epitopes in the N. meningitidis IgA1 protease and S. pneumoniae surface proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号