首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperia galba Montagu is associated with gelatinous zooplankton as are many species of the Hyperiidea. The hosts preferred in the European seas are the large scyphomedusaeAurelia aurita, Chrysaora hysoscella, Rhizostoma pulmo, Cyanea capillata andCyanea lamarckii, which harbour the first developmental stages. The anamorphic development produces young that are incapable of swimming at the time of hatching. They are characterized by an embryonic abdomen without extremities and external segmentation; the eyes are not completely developed and the mouth is primitive lacking bristles, molar and incisor. The postembryonic development, described in detail, is subdivided into two phases: the pantochelis phase and the protopleon phase; the former comprises only one stage; the latter can be subdivided into four stages. In the course of postnatal development the larval organs are reduced and characters typical of the adult are gradually differentiated.H. galba plays an important role as obligatory endoparasite of scyphomedusae at least during the first stages of development; without a host this amphipod cannot survive, neither benthically nor in the plankton. The transition from life in the female's marsupium to endoparasitism in the jellyfish generally occurs during stage of the postembryonic development which is the first stage of the protopleon phase. The specific adaptations of its reproductive biology to a parasitic mode of life such as moult inhibition under starvation, development of larval organs and the behavioural patterns of the females as well as the young are described. Further, the influence of external factors such as temperature and food supply on the course of development is examined. Dedicated to Prof. Dr. H. Mergner on the occasion of his 70th birthday.  相似文献   

2.
Gelatinous plankton is an important food resource for several species of fishes in the Southwestern Atlantic Ocean. Some fish depend heavily on these organisms and are specialized to feed on ctenophores, salps and medusae, while others only consume gelatinous plankton occasionally. We hypothesize that consumption of gelatinous plankton by fishes represents an alternative food resource when primary prey are not available during cold periods in the study area. To determine seasonal variations of gelatinous plankton consumption by fishes, data samples were grouped into cold and warm periods. A total of 64,567 stomachs belonging to 106 species of fish were analysed, of which 32,943 (51%) contained food items. Of those containing food items, 2719 (8.2%), from 38 fish species, contained gelatinous items. Fourteen species ingested gelatinous in warm period, nine in cold period, and 15 in both periods. The proportion of stomachs with gelatinous was significantly greater during the cold period. Ctenophores were the most predominant prey in both periods, followed by salps and medusae. Consumption of ctenophores, salps and medusae was unevenly distributed within the area during the different periods. Classification methods (group average sorting utilizing Bray–Curtis similarity measures based on log (X + 1) identified eight areas of consumption. SIMPER (similarity percentages) analyses revealed that nine fish species contributed most to gelatinous plankton consumption. The seasonal and spatial variation of gelatinous consumption by fish would be related to the availability of food in each period. Strategies of gelatinous consumption, including survival, feeding opportunities and prey specialization, are discussed.  相似文献   

3.
The seasonal fluctuations in the incidence of planktonic organisms and the larval forms of certain crustaceans such as crabs, barnacles and post larvae of prawns in the plankton of the south-west coast of India have been followed for a period of three years from 1963. South-west monsoon period is the least productive period for zooplankton in this area. Brachyuran zoeae, post larvae of prawns and barnacle nauplii occur in the plankton throughout the year with distinct peaks for different groups. The zoeae ofUca annulipes occur in the plankton from September to May with a peak during November–December. The zoeae ofPortunus pelagicus are present in the plankton from September to June and their abundance is in February–March. The post larvae ofMetapenaeus affinis are found in the inshore plankton from November to June with the peak in March. The nauplii ofBalanus amphitrite communis occur in the plankton in all the months of the year, the peak incidence has been during November January. The zoeae ofU. annulipes are found to tolerate better the medium saline conditions. Of the ecological factors, salinity of the ambient water and the availability of planktonic food for the larvae seem to influence the seasonal fluctuations of these crustacean larvae in this locality.  相似文献   

4.
D. Straile 《Oecologia》2000,122(1):44-50
The timing of various plankton successional events in Lake Constance was tightly coupled to a large-scale meteorological phenomenon, the North Atlantic Oscillation (NAO). A causal chain of meteorological, hydrological, and ecological processes connected the NAO as well as winter and early spring meteorological conditions to planktonic events in summer leading to a remarkable memory of climatic effects lasting over almost half a year. The response of Daphnia to meteorological forcing was most probably a direct effect of altered water temperatures on daphnid growth and was not mediated by changes in phytoplankton concentrations. High spring water temperatures during ”high-NAO years” enabled high population growth rates, resulting in a high daphnid biomass as early as May. Hence, a critical Daphnia biomass to suppress phytoplankton was reached earlier in high-NAO years yielding an early and longer-lasting clear-water phase. Finally, an earlier summer decline of Daphnia produced in a negative relationship between Daphnia biomass in July and the NAO. Meteorological forcing of the seasonal plankton dynamics in Lake Constance included simple temporal shifts of processes and successional events, but also complex changes in the relative importance of different mechanisms. Since Daphnia plays an important role in plankton succession, a thorough understanding of the regulation of its population dynamics provides the key for predictions of the response of freshwater planktonic food webs to global climate change. Received: 15 February 1999 / Accepted: 23 August 1999  相似文献   

5.
Stomach contents of 4808 fishes of 20 species caught in the eastern part of the Patagonian Shelf between 1999 and 2012 were analysed to assess dietary contributions of gelatinous plankton resources. Gelatinous plankton occurred in diets of seven species with two species, Patagonotothen ramsayi and Squalus acanthias, having >10% ctenophores in their diet. Consumption of gelatinous plankton was important in P. ramsayi and was strikingly seasonal, with maximum occurrence (up to 46% of non‐empty stomachs) in late summer to autumn. Ctenophores were most abundant in P. ramsayi of 25–34 cm total length, LT, whereas salps were more frequent in larger >35 cm LT individuals. In winter to spring, occurrence of gelatinous plankton in diets was minimal, reflecting their overall seasonal abundance in the ocean. The recent increase in abundance of P. ramsayi has enabled the species to recycle a significant proportion of the ecosystem production from gelatinous dead end to the main muscular food chain via seasonal reliance on ctenophores, jellyfish and tunicates. This additional influx of production that has been diverted from the gelatinous food chain favours the increase in abundance of several piscivorous top predators and affects the trophic web structure of the Patagonian Shelf ecosystem.  相似文献   

6.
Summary The seasonal succession of the plankton in the marine brackish Lake Grevelingen, a closed sea arm in the S.W.-Netherlands, comprises the initial stagessensu Margalef and is characterized by predominantly small phytoplankton (flagellates, diatoms) and zooplankton (rotifers, tintinnids, copepods), maintaining relatively high levels of production from early spring (February) to late summer (September). The structure of the plankton in the course of seasonal succession is in agreement with the concepts of Margalef.Simplification of the pelagic food web in Lake Grevelingen has occurred as a consequence of the elimination of the tides. Some examples are given in relation to the composition of the phyto- and zooplankton and of its significance. The occurrence of rotifer-dominated zooplankton blooms in early spring is emphasized.Closed sea arms such as Lake Grevelingen, showing the same morphometry as the previous tidal estuary, contain extended shallow areas which influence strongly the pelagic zone. The abundance in the zooplankton of larval stages of several littoral-benthic species demonstrate these influences clearly. The shallows of the lake, occupied by eelgrass beds (Zostera marina) in summer, influence the pelagic zone in several ways: large quantities of detritus are given off after the growing season, sheltered habitats are supplied for small pelagic animals, and eelgrass leaves represent a substrate for epifauna species.Contribution no. 168 of the Delta Institute for Hydrobiological Research.  相似文献   

7.
I studied the seasonal occurrence of the andromeda lace bug,Stephanitis takeyai, on its two main host-plant species. In a secondary forest in Kyoto, this bug altered its hosts seasonally, i.e., from an evergreen shrub,Pieris japonica, in winter to a deciduous shrub,Lyonia elliptica, in summer. In contrast, in Nara park where fewL. elliptica were available, the bug exploited onlyP. japonica. Thus, seasonal host alternation by this bug is not obligate. A comparison of adult longevity and fecundity on the two host-plant species demonstrated the higher quality ofL. elliptica as a food resource. Corresponding to this difference in host quality, there was a dramatic difference in the seasonal population growth in the two study sites. In Nara, the population size at the beginning of the 2nd generation was almost the same as in the overwintered generation, whereas in Kyoto the population size in the 2nd generation was approximately one hundred times as large as in the overwintered generation. Thus seasonal host alternation is adaptive for the bug. In a previous study, I reported that overwintering as eggs in living leaves of their hosts is likely to be common among all the related species of this bug. Thus, this trait can be considered to be a phylogenetic constraint to the group. I speculate that host alternation by this bug has been derived because it is more adaptive from autoecy on an evergreen plant, similar to the pattern currently found in Nara, and that this bug can not only exploit deciduous host due to a phylogenetic constraint.  相似文献   

8.
Several species of scyphozoan medusae occur in river estuaries and other brackish waters but it is often unknown if the planulae settle and the scyphopolyps reproduce in those low-salinity waters. In the present study, scyphozoan species from the German Bight (North Sea) were tested in laboratory experiments to investigate their tolerance of low salinity. Planula larvae released from medusae in salinity 32 were still active after the salinity was reduced to 10 (Cyanea capillata, Cyanea lamarckii) and to 7 (Chrysaora hysoscella) in laboratory treatments. Planulae did not settle on the undersides of floating substrates when salinity was reduced to <20. By contrast, planulae released from C. capillata medusae in Kiel Bight (western Baltic Sea) in salinity 15 developed into polyps in laboratory cultures. Polyps reared from planulae in salinity 36 survived a reduction to 12 (C. capillata, C. lamarckii) and to 8 (Aurelia aurita). Polyps of all tested species strobilated and released young medusae (ephyrae) in salinity 12. These results show a high tolerance of planulae and polyps to low salinity, indicating their possible occurrence in estuaries and brackish waters. In addition to laboratory observations, young C. capillata ephyrae were collected in the western Baltic Sea (Kiel Bight) in salinity 15, which indicates that they were probably released by a local polyp population. We suggest that the polyps of the painfully stinging lion’s mane, C. capillata, may be more widespread in the Baltic Sea than previously assumed and that the occurrence of the medusae may not only depend on inflow of water masses from the North Sea.  相似文献   

9.
Studies of “gelatinous” zooplankton are rather rare, and little is known about the biology and ecology of Antarctic Cnidaria, especially for siphonophores. More investigations are necessary for complementing the current information on the “gelatinous” zooplankton inhabiting this important but little know biogeographical region, especially because siphonophores very likely play a significant role in the Antarctic food chains. The species composition, abundance and vertical distribution of planktonic cnidarians in the Croker Passage were evaluated using the data obtained from three expeditions. Zooplankton were sampled with a double plankton net between 0 and 1,200 m water depth in both summer and winter seasons. In total, ten species of siphonophores and four species of medusae were identified. Siphonophore assemblages were dominated by Dimophyes arctica, Pyrostephos vanhoeffeni, and Diphyes dispar. D. arctica and D. dispar occurred in greatest numbers in summer, mainly in the upper mesopelagic zone. P. vanhoeffeni, a cryophilic species, occurred most abundantly in winter (in the lower mesopelagic zone), when they probably reproduce. Restricted circulation from the Bellingshausen Sea over the continental shelf into Croker Passage may exclude the deeper-living oceanic fauna from the area of investigation, as indicated by the low abundances of Crystallophyes amygdalina, Muggiaea sp., and Heteropyramis spp. Four species of medusae were identified. The highest abundance was noted for Solmundella bitentaculata and Arctapodema sp. These occurred most abundantly in the middle (January) and end (April) of summer.  相似文献   

10.
Kun Guo  Le Kang  Feng Cui 《Insect Science》2017,24(3):431-442
Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large‐scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme–copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin‐converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR‐1‐like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids.  相似文献   

11.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   

12.
Abstract Adult body size, a key life history component, varies strongly within and between Heliconius erato phyllis (Lepidoptera: Nymphalidae) populations. In the present study, we determined whether seasonal variation in adult body size is temperature related and/or determined by seasonal changes of host plants (Passifloraceae) used by the larval stage. A population of H. erato phyllis located in a Eucalyptus plantation (Barba Negra Forest, Barra do Ribeiro County, Rio Grande do Sul State, Brazil) was sampled every 45 days from March 1997 to October 1998 to quantify seasonal variation in adult body size and use of larval host plants. In the laboratory, the effects of the following factors on adult body size were quantified: (i) host plant species (Passiflora misera or Passiflora suberosa); (ii) food quantity consumed by larvae (experimentally manipulated for each passion vine species); (iii) winter and summer temperatures (15 and 25°C, respectively); and (iv) the interaction between host plant species and temperature. Adults emerging during summer were larger than those emerging in other seasons. Female butterflies oviposited selectively on P. misera even when the dominant passion vine was P. suberosa. They only switched from using P. misera to P. suberosa during later autumn and winter, when P. misera vines were completely defoliated. The laboratory feeding trials with both passion vines showed a strong positive association between food quantity consumed by larvae and adult size. They also confirmed that adults are larger when their larvae are reared on P. misera than on P. suberosa. Temperature during larval development had no effect on H. erato phyllis adult size. Thus, seasonal variation of H. erato phyllis adult size in a given place is primarily determined by the availability and quality of host plant species used by the larval stage.  相似文献   

13.
Novel data on the biometry, size distribution and parasitesof Aequorea aequorea and Chrysaora hysoscella are provided frominvestigations conducted during summer and winter in the northernBenguela ecosystem. The relationship between mass and diameterof C. hysoscella did not change on a seasonal basis, and thispossibly reflects the aseasonal nature of the food environment.The changes in the size structure of C. hysoscella across theshelf and with depth agree with postulated population maintenancestrategies in the region. Aequorea aequorea was not stronglyparasitized, butC. hysoscella was subject to occasional parasitismby Hyperia medusarum, especially in winter when C. hysoscellais thought to reproduce. Parasites were distributed in a typical,negative-binomial manner on their hosts, but load was independentof host size. As medusae increased in diameter so H. medusarumtended to move from other tissues to the gonads.  相似文献   

14.
Summary Hyperia galba was collected in the waters around Helgoland and in the Weser-Elbe-estuary during autumn. Its mode of life is a temporary but obligatory parasitism. The basal biochemical composition of the adults was analyzed in detail and related to the fresh, dry, and ash-free dry weight as well as sex and body length. Hyperia galba (males/females) consists of 85/86% water; the dry matter contains approximately 64/61% protein, 10/11% lipid, 1.2/1.5% carbohydrate, 10/8% chitin, and 23/23% ash. The analyses of basal elemental composition yielded approximately 38% C, 9% N and 6% H. Under natural conditions, individuals may encounter at least two periods of food shortage during their lives. Therefore, the analyses were carried out on individuals of different developmental stages also under food deprivation. The data are discussed with respect to the special mode of life of the species and compared with those found by other authors in several related crustacean species.Abbreviations AFDW ash-free dry weight - BL body length - DW dry weight - SD standard deviation - WW wet weight  相似文献   

15.
The influence of different culture systems on the amount of plankton consumed by fingerlings of three carp species (Labeo rohita, Catla catla and Cirrhinus mrigala) was examined in outdoor culture tanks during a 90 day growing period. The fish were raised under two basically different feeding conditions: (a) fed with allochthonous live plankton; (b) fed with plankton grown autochthonously in the fish growing tanks fertilized with manures. Both feeding regimes were compared with control groups. It was found that the plankton intake for carp held in the live food system was significantly higher than with the manured and control systems. Related to maximum intake, maximum abundance of plankton in the live food system was a consequence of improved water quality expressed in terms of lower values of BOD and COD and higher values of DO and pH; this was conducive to fast reproduction of some of the zooplankton which constituted the major food items for the test carp, as well as to the regular exogenous introduction of live plankton. The ingestion of plankton was found to be related to carp body weight raised to the power b. The exponent b ranged from 0.29 to 0.93 during the 90-day growing period.  相似文献   

16.
The myceliophagous mite Microdispus lambi has become a veritable plague since 1996, when it was first observed in Spanish mushroom crops, and is now causing substantial economic losses, particulary in spring and summer. This study looks at seasonal variation of the pest, its distribution on commercial farms and the population development during the crop cycle of the common white mushroom, Agaricus bisporus. Over a period of 18 months, 24 consecutive mushroom crop cycles were monitored and a total of 24 spawn and 960 substrate samples were analysed. We found that it is usually the substrates in the growing rooms that are infested, most commonly the compost. In many cases, the pest can be detected when the first ‘flush’—i.e., mushroom growth surge, with weekly periodicity—is harvested, although damage does not become evident until the third flush. Mites were detected at the back of the mushroom growing room and, to a lesser extent, near the access door.  相似文献   

17.
TwoApium graveolens var.rapaceum (L.) cultivars that differ in their suitability for the survival and growth ofSpodoptera exigua (Hübner) andTrichoplusia ni (Hübner) were used to examine the effect of genetic and seasonal environmental variation in host plant suitability on the efficacy ofBacillus thuringiensis subsp.kurstaki (Berliner). The effects of host plant genotype andB. thuringiensis were generally independent, so thatB. thuringiensis efficacy was greatest on the resistant host plant cultivar. Host plant suitability varied within growing season for both insect species but, while host plant suitability decreased with increasing plant age forT. ni, the response ofS. exigua to plant age was not as clear. Within season variation in host plant suitability affectedB. thuringiensis efficacy and the interaction betweenB. thuringiensis and host plant cultivar forS. exigua but not forT. ni. Soluble protein and Folin-Denis phenolic concentrations of host plant tissue were not correlated with changes in host plant suitability to either insect species.  相似文献   

18.
A freshwater medusa, Limnocnida indica Annandale, 1912 was observed in the month of April and May of two consecutive years 1994, 1995 in a lake having free connection with the river Yamuna in Delhi. Medusae in the lake were abundant in those areas where the vegetation of Hydrilla sp. was moderately dense, whereas it was absent in areas with Potamogeton sp. The composition of planktonic community in the lake was different before and during the occurrence of medusae and after their disappearance. Moina sp. and Keratella sp. were totally absent and Mesocyclops sp. and nauplii were reduced in number during the occurrence of medusae which were either present or more in number before the occurrence of the latter. Dinophyceae was maximum in number during this period. These zooplankters reappeared after the disappearance of medusae. It is likely that ecological conditions which prevailed during April and May favour the seasonal occurrence of freshwater medusae.  相似文献   

19.
A seasonal and ecological study of the phytoplankton of Loch Lomond   总被引:5,自引:4,他引:1  
The seasonal succession of phytoplankton in Loch Lomond has been studied both quantitatively and from observations on net plankton. From a qualitative investigation of net phytoplankton Loch Lomond may be described as diatom-desmid in nature although from the quantitative studies the general domination of the population by diatoms becomes clear. During the vernal phytoplankton increase diatoms contributed more than 90% of the population throughout the loch. The bulk of the phytoplankton production occurred in the southern region, where the standing crop was considerably greater throughout the year than in other regions of the loch.Patterns of seasonal succession are described for all species which make an important contribution to the productivity of the loch and the observed successions related to measured physical and chemical changes in the water. Explanations are put forward to account for the absence of a second (autumnal) pulse ofMelosira in Loch Lomond. The appearance ofAnabaena circinalis is a possible indication of the changing trophic status of the southern region of the loch.  相似文献   

20.
Populations of the colonial hydroid Obelia geniculata in the White Sea reproduce asexually by frustule formation. Young medusae appear in the plankton during July and August. The number of medusae rarely exceeds 36 per m3, and the average number varies every year from 0.4 to 10 per m3. The size of medusae is smaller than reported from other regions. The umbrella of the largest recorded medusa was only 0.57 mm in diameter and the specimen had just 35 tentacles. Only a few mature medusae were found during the study. The colonies in the White Sea are epiphytic and grow only on laminarian thalli. At the beginning of July there are no colonies on thalli from the upper subtidal zone. By the end of August, colonies of O.␣geniculata had increased in density to 30 per m2. Hydroid recruitment was attributed to active frustule production by colonies living below that zone. The frustules detach from the stems of the hydroids and are found in plankton. Production of frustules on branches occurs continuously during colony growth until water temperatures climb above 0 °C. We found that water temperature in this Arctic environment is generally too low for medusa maturation and planula development in the species. Propagation by frustule formation is the principal means of reproduction in Obelia geniculata within the White Sea, and this phenomenon accounts for the species being a dominant epiphyte on laminarian thalli there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号