首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

A graphical method is presented for the conformational analysis of the sugar ring in DNA fragments by means of proton-pro ton couplings. The coupling data required for this analysis consist of sums of couplings, which are referred to as Σ1′ (= J1′2′ + J1′2″), Σ2′ (= J1′2′ + J2′3′+J2′2″), Σ2″ (= J1′2″ + J 2″3′ + J2′2″) and Σ3′ (= J2′3′ + J2″3′ + J3′4′). These sums of couplings correspond to the distance between the outer peaks of the H1′, H2′, H2″ and H3′ {31P} resonances, respectively, (except for Σ2′ and Σ2″ in the case of a small chemical shift difference between the H2′ and H2″ resonances) and can often be obtained from 1H-NMR spectra via first-order measurement, obviating the necessity of a computer-assisted simulation of the fine structure of these resonances. Two different types of graphs for the interpretation of the coupling data are discussed: the first type of graph serves to probe as to whether or not the sugar ring occurs as a single conformer, and if so to analyze the coupling data in terms of the geometry of this sugar ring. In cases where the sugar ring does not occur as a single conformer, but as a blend of N-and S-type sugar puckers, the second type of graph is used to analyze the coupling data in terms of the geometry and population of the most abundant form.

It is shown that the latter type of analysis can be carried out on the basis of experimental values for merely Σ1′, Σ2′ and Σ2″, without any assumptions or restrictions concerning a relation between the geometry of the N- and S-type conformer. In addition, the question is discussed as to how insight can be gained into the conformational purity of the sugar ring from the observed fine structure of the H1′ resonance. Finally, a comparison is made between experimental coupling data reported for single-stranded and duplex DNA fragments and covalent RNA-DNA hybrids on the one hand and the predicted couplings and sums of couplings presented in this paper on the other hand.  相似文献   

2.
The sugar ring conformations of 2',3'-dideoxyribosyladenine (ddA), 2',3'-dideoxyribosylcytosine (ddC), 2',3'-dideoxyribosylguanine (ddG), 2',3'-dideoxyribosylhypoxanthine (ddI), 3'-azido-2',3'-dideoxyribosylthymine (AZT), 3'-azido-2',3'-dideoxyribosyluracil (AZU) and 3'-fluoro-2',3'-dideoxyribosylthymine (FddT) have been investigated by 1H NMR spectroscopy. While the sugar ring in FddT exists almost totally in C2'-endo geometry, other nucleosides show equilibrium between sugar puckers of C3'-endo family (N-type) and C2'-endo family (S-type). For unsubstituted dideoxynucleosides C3'-endo conformer is favoured (congruent to 75%), whereas for AZT and AZU both the conformers have almost equal populations. Unlike X-ray diffraction studies, the NMR results do not support the suggestion that C3'-exo sugar puckers are desirable for the anti-HIV activity of these nucleosides.  相似文献   

3.
K Weisz  R H Shafer  W Egan  T L James 《Biochemistry》1992,31(33):7477-7487
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.  相似文献   

4.
N Zhou  S Manogaran  G Zon  T L James 《Biochemistry》1988,27(16):6013-6020
Exchangeable and nonexchangeable protons of [d(GGTATACC)]2 in aqueous cacodylate solution were assigned from two-dimensional nuclear Overhausser effect (2D NOE) spectra. With phase-sensitive COSY and double quantum filtered COSY (DQF-COSY) experiments, the cross-peaks resulting from deoxyribose ring conformation sensitive proton-proton vicinal couplings, i.e., all 1'-2', 1'-2", 2'-3', and 3'-4' couplings and six from 2"-3' couplings, were observed. From the cross-peak fine structure, the 2',2" proton assignments can be confirmed; coupling constants J1'2' and J1'2" and sums of coupling constants involving H2' and H2" for all residues and H3' for C8 were obtained. The DISCO procedure [Kessler, H., Muller, A., & Oschkinat, H. (1985) Magn. Reson. Chem. 23, 844-852] was used to extract individual 1'-2' and 1'-2" coupling constants. The sum of coupling constants involving H1' or H3' was measured from the one-dimensional spectrum where signal overlap is not a problem. Analysis of the resulting coupling constants and sums of coupling constants, in the manner of Rinkel and Altona [Rinkel, L. J., & Altona, C. (1987) J. Biomol. Struct. Dyn. 4, 621-649], led to the following conclusion: C2'-endo deoxyribose ring conformation is predominant for every residue, but a significant amount of C3'-endo conformation may exist, ranging from 14% to 30%.  相似文献   

5.
S G Kim  L J Lin  B R Reid 《Biochemistry》1992,31(14):3564-3574
In DNA or RNA duplexes, the six-bond C3'-O3'-P-O5'-C5'-C4'-C3' backbone linkage connecting adjacent residues contains six torsion angles (epsilon, zeta, alpha, beta, gamma, delta) but only four protons. This seriously limits the ability to define the backbone conformation by NMR using purely 1H-1H distance geometry (DG) methods. The problem is further compounded by the inability to assign two of the four backbone protons, namely the poorly resolved H5' and H5' protons, and invariably leads to DG structures with poorly defined backbone conformations. We have developed and tested a reliable method to constrain the beta, gamma, and epsilon (and indirectly alpha and zeta) backbone torsion angles by lower-bound NOE distances to unassigned H5'/H5' resonances combined with either 1H line widths or the conservative use of sigma J measurements; the method relies only on 1H 2-D NMR data, does not involve any structural assumptions, and leads to much improved backbone convergence among DG structures. The C4'-C5' torsion angle gamma is constrained by lower-bound NOE distances from H2' and from H6/H8 to any H5'/H5', as well as by sigma JH4, coupling measurements in the 3.9-4.4 ppm region; delta is constrained by H1'-H4' NOE distances and by H3'-H4' and H3'-H2' J couplings in COSY data; epsilon is partially constrained by H3' line width and/or further constrained by subtracting the minimum possible sigma JH3'-H from the observed sigma JH3' (COSY) to arrive at the maximum possible JH3'-P, which is then converted to H3'-P distance bounds. The angle beta is partially constrained via H5'-P and H5'-P distance bounds consistent with the maximum H5'-P and H5'-P J couplings derived from the observed H5' and H5' line widths, while alpha and zeta are indirectly constrained by lower distance bounds on the observed (n)H1' to (n + 1)H5'/H5' NOEs combined with the prior partial constraints on beta, gamma, delta, and epsilon. The combined effects of these additional constraints in determining distance geometry structures have been demonstrated using a 12-base duplex, [d(GCCGTTAACGGC)]2. Coordinate RMSDs per atom between structures refined with these constraints from random-embedded DG structures, from ideal A-DNA, and from B-DNA starting structures were less than 0.4 A for the central 8 base pairs indicating good convergence. All backbone angles for the central 8 base pairs are very well constrained with less than 10 degrees variation in any of the 48 torsion angles.  相似文献   

6.
One- and two-dimensional NMR studies at 300 MHz and 500 MHz were carried out on the two oligonucleotides d(C-C-G-A-A-T-T-C-G-G) and d(C-C-G-A-m6A-T-T-C-G-G) in aqueous solution. NMR spectra were observed at 10 mM sample concentration over the temperature range 273-368 K. Assignments are given of the base, H1', H2', H2", H3' and of some H4' resonances, based upon a combination of two-dimensional correlation spectra (COSY) and two-dimensional nuclear Overhauser effect spectra (NOESY); imino-proton resonances were assigned with the aid of a two-dimensional NOE experiment. Chemical shift vs temperature profiles were constructed in order to gain insight into the influence of N6-methylation of residue A(5) on the temperature-dependent conformational behaviour of the decamer and to determine thermodynamic parameters for the duplex-to-coil transition. The NOESY spectra, the imino-proton spectra and the shift profiles of the two compounds, under conditions where each forms a B-DNA-type duplex, are very similar. This is taken to indicate that the influence of N6-methylation of residue A(5) on the local structure of the duplex must be small. However, the temperature dependence of the (non-)exchangeable proton resonances of the two compounds reveals that methylation slows down the duplex-single-strand exchange. Furthermore, a thermodynamic analysis of the two compounds indicates that N6-methylation slightly decreases the stability of the duplex relative to the monomeric forms (Tm is reduced from 332 K down to 325 K at 10 mM sample concentration). Proton-proton couplings were obtained by means of one-dimensional and two-dimensional NMR experiments and were used in a conformational analysis of the sugar ring of each residue of the two compounds in the duplex form. The analysis indicated that all sugar rings display conformational flexibility in the intact duplex: population S-type sugar conformation ranges from 70% to 100%. A more refined analysis of the sugar rings of the parent compound revealed a sequence-dependent variation of the sugar geometry. This variation does not follow well the trend predicted by the Calladine/Dickerson sigma 3-sum rule [Dickerson, R. E. (1983) J. Mol. Biol. 166, 419-441; Calladine, C. R. (1982) J. Mol. Biol. 161, 343-352]; moreover the actual variations appear to be smaller in solution than those expected on the basis of known X-ray structures.  相似文献   

7.
A 500 MHz and 300 MHz NMR study of the trinucleoside diphosphate 3'd(A2'-5'A2'-5'A) is presented. In addition, circular dichroism is used to study base stacking in the title compound. The complete 1H-NMR spectral assignment of the sugar ring proton signals is given. Information about the sugar ring (N- or S-type conformation) and about the backbone geometry along C4'-C5' and C5'-O5' bonds is obtained from the NMR coupling constants. It is shown that the trimer mainly occurs in the N-N-N stacked state at low temperatures; the presence of a minor amount of N-N-S conformational sequence is indicated.  相似文献   

8.
Two-dimensional NMR studies on the anthramycin-d(ATGCAT)2 adduct   总被引:1,自引:0,他引:1  
T R Krugh  D E Graves  M P Stone 《Biochemistry》1989,28(26):9988-9994
Two-dimensional NMR experiments were performed on the adduct of anthramycin with d(ATGCAT)2 to obtain the assignments of the nucleotide base and sugar protons as well as the anthramycin protons. Anthramycin is covalently attached to a guanine 2-amino group, forming the d(ATamGCAT).d(ATGCAT) modified duplex. The anthramycin protons in the minor groove exhibit NOEs to several nucleotide protons. The network of anthramycin-nucleotide NOEs and the measurement of the 10-Hz coupling constant between the anthramycin H11 and H11a protons shows that anthramycin is covalently attached as the S stereoisomer at the anthramycin C11 position with the side chain of anthramycin oriented toward the 5' end of the modified strand. The NOE data show that the anthramycin-modified duplex is in a right-handed conformation with all bases in an anti conformation. Analysis of the J1'-2' coupling constants for the resolved H1' resonances shows that the S-type conformation of the sugars is highly preferred.  相似文献   

9.
Nuclear magnetic resonance (NMR) and model-building studies were carried out on the hairpin form of the octamer d(CGaCTAGCG) (aC = arabinofuranosylcytosine), referred to as the TA compound. The nonexchangeable protons of the TA compound were assigned by means of nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY). From a detailed analysis of the coupling data and of the NOESY spectra the following conclusions are reached: (i) The hairpin consists of a stem of three Watson-Crick type base pairs, and the two remaining residues, T(4) and dA(5), participate in a loop. (ii) All sugar rings show conformational flexibility although a strong preference for the S-type (C2'-endo) conformer is observed. (iii) The thymine does not stack upon the 3' side of the stem as expected, but swings into the minor groove. (This folding principle of the loop involves an unusual alpha t conformer in residue T(4).) (iv) At the 5'-3' loop-stem junction a stacking discontinuity occurs as a consequence of a sharp turn in that part of the backbone, caused by the unusual beta + and gamma t torsion angles in residue dG(6). (v) The A base slides over the 5' side of the stem to stack upon the aC(3) residue at the 3' side of the stem in an antiparallel fashion. On the basis of J couplings and a set of approximate proton-proton distances from NOE cross peaks, a model for the hairpin was constructed. This model was then refined by using an iterative relaxation matrix approach (IRMA) in combination with restrained molecular dynamics calculations. The resulting final model satisfactorily explains all the distance constraints.  相似文献   

10.
Carbon-13 and proton NMR spectra of a series of oligodeoxynucleotides (d(CT), d(CC), d(TA), d(AT), d(CG), d(GC), d(AG), d(AAA), d(TATA) and d(GGTAAT] were measured at various temperatures. The three coupling constants that are related to the magnitude of backbone angle epsilon (J(C4'-P), J(C2'-P) and J(H3'-P] are analyzed in terms of a three-state equilibrium about this bond. Two epsilon (trans) angles occur, which differ in magnitude depending on the conformation (N or S) of the adjoining deoxyribose ring. The S-type deoxyribose ring is associated with a smaller epsilon (trans) angle: epsilon (t,S) = 192 degrees. The N-type deoxyribose ring is associated with a larger epsilon (trans) angle epsilon (t,N) = 212 degrees. The third rotamer participating in the conformational equilibrium, is a gauche(-) (epsilon (-] conformer and occurs exclusively in combination with the S-type sugar ring (epsilon (-,S) = 266 degrees). Within the limits of experimental error, the magnitude of these three angles appears to be independent of the particular base sequence, except in the case of d(CG) where a slightly larger epsilon (t,S) angle (197 degrees) is indicated. A simple equation is proposed which may be used to calculate the population of epsilon (t,S) conformer in cases where only J(H3'-P) is known.  相似文献   

11.
NMR studies were carried out on samples of the non-self-complementary tetramers d(C-A-C-A), d(T-G-T-G), d(G-A-G-A) and d(T-C-T-C) and of 1:1 mixtures of the complementary tetramers d(C-A-C-A) X d(T-G-T-G) and d(G-A-G-A) X d(T-C-T-C) at two DNA concentrations and of the self-complementary octamers d(C-A-C-A-T-G-T-G) and d(G-A-G-A-T-C-T-C). Assignments, based upon one-dimensional NOE and homonuclear-decoupling and two-dimensional correlated and NOE spectroscopies are given of the resonances of most of the base and sugar protons. Chemical shift vs temperature profiles, constructed for all samples, yielded insight into the temperature- and concentration-dependent conformational behaviour of the compounds and were used to obtain thermodynamic parameters pertaining to the stacked-single-strand----random-coil and duplex----random-coil equilibria. Vicinal proton-proton couplings were analyzed in terms of the conformation of the deoxyribose rings in the single-stranded tetramers and duplexed octamers. The NOE patterns, chemical shift profiles, imino-proton resonances and coupling data revealed that the compounds adopt B-DNA-like structures. The ratio duplexed/stacked-single-strand/random coil depends upon external conditions as well as upon base sequence. The thermodynamic data indicate that: in terms of single-helical stacking, the R-R steps (Tm 321-328 K) appear more stable than the Y-R or R-Y steps (Tm 308-316 K) and the Y-Y steps score least (Tm 290-300 K), and the duplexes consisting of alternating, d(Y-R)n, strands are more stable, in terms of delta H degrees, compared to the d(R-R)n X d(Y-Y)n duplexes. The analyses of the couplings demonstrated that the sugars of the single-stranded tetramers and duplexed octamers occur as a blend of N- and S-type conformers, with a preference for the S-type (C2'-endo) sugar conformation: upon duplex formation, no significant shift in the N-type/S-type ratio was observed. The fraction S-type sugar conformation of a given residue, %S, in the stacked-single strands was found to depend upon the nature of its own base and that of the adjacent residues: sugars in an R-R stretch display high values of %S (90-100), whereas those in Y-Y stretches show relatively low values (approximately equal to 65).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
P N Borer  L S Kan  P O Ts'o 《Biochemistry》1975,14(22):4847-4863
1H nuclear magnetic resonance (NMR) spectra of a self-complementary ribosyl hexanucleotide, A2GCU2, are investigated as a function of temperature and ionic strength in D2O. Seventeen nonexchangeable base and ribose-H1' resonances are resolved, and unequivocally assigned by a systematic comparison with the spectra of a series of oligonucleotide fragments of the A2GCU2 sequence varying in chain length from 2 to 5. Changes in the chemical shifts of the 17 protons from the hexamer as well as the six H1'-H2' coupling constants are followed throughout a thermally induced helix-coil transition. These sigma vs. T and J vs. T (degrees C) profiles indicate that the transition is not totally cooperative and that substantial populations of partially bonded structures must exist at intermediate temperatures, with the central G-C region being most stable. Transitions in chemical shift for protons in the same base pair exhibit considerable differences in their Tm values as the data reflect both thermodynamic and local magnetic field effects in the structural transition, which are not readily separable. However, an average of the Tm values agrees well with the value predicted from studies of the thermally induced transition made by optical methods. The values of J1'-2' for all six residues become very small (less than 1.5 Hz) at low temperatures indicating that C3'-endo is the most heavily populated furanose conformation in the helix. The sigma values of protons in the duplex were compared with those calculated from the ring current magnetic anisotropies of nearest and next-nearest neighboring bases using the geometrical parameters of the A'-RNA and B-DNA models. The sigma values of the base protons in the duplex calculated assuming the A'-RNA geometry agree (+/- approximately 0.1 ppm) with the observed values much more accurately than those calculated on the basis of B-DNA geometry. The measured sigma values of the H1' are not accurately predicted from either model. The synthesis of 35 mg of A2GCU2 using primer-dependent polynucleotide phosphorylase is described in detail with extensive discussion in the microfilm edition.  相似文献   

13.
All H,H, H,P and several C,P coupling constants, including those between C-4' and the vicinal phosphorus atom, have been determined for NADP+, NADPH coenzymes and for a 4,4-dimer obtained from one-electron electrochemical reduction of NADP+. From these data the preferred conformation of the ribose, that of the 1,4-dihydronicotinamide rings, and the conformation about bonds C(4')-C(5') and C(5')-O(5') were deduced. The preferred form of the 1,4- and 1,6-dihydropyridine rings and the conformation about the ring-ring junction were also obtained for all the other 4,4- and 4,6-dimers formed in the same reduction. All the dimers show a puckered structure, i.e., a boat form for the 1,4- and a twist-boat for the 1,6-dihydronicotinamide ring; both protons at the ring-ring junctions are equatorial and have preferred gauche orientation. On the contrary, the reduced coenzyme NADPH displays a planar or highly flexible conformation, rapidly flipping between two limiting boat structures. The conformation of the ribose rings, already suggested for the NADP coenzymes to be an equilibrium mixture of C(2')-endo (S-type) and C(3')-endo (N-type) puckering modes, has been reexamined by using the Altona procedure and the relative proportion of the two modes has been obtained. The S and N families of conformers have almost equal population for the adenine-ribose, whereas for the nicotinamide-ribose rings the S-type reaches the 90%. The rotation about the ester bond C(5')-O(5') and about C(4')-C(5'), defined by torsion angles beta and gamma respectively, displays a constant high preference for the trans conformer beta t (75-80%), whereas the rotamers gamma are spread out in a range of different populations. The values are distributed between the gauche gamma + (48-69%) and the trans gamma t forms (28-73%). The gamma + conformer reaches a 90% value in the case of NADP+ and NMN+. The conformations of the mononucleotides 5'-AMP, NMN+ and NMNH were also calculated from the experimental coupling constant values of the literature.  相似文献   

14.
Solution conformation of self-complementary DNA duplex d-CGATCG, containing 5' d-CpG 3' site for intercalation of anticancer drug, daunomycin and adriamycin, has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Complete resonance assignments of all the protons (except some H5'/H5" protons) have been obtained following standard procedures based on double quantum filtered correlation spectroscopy (dQF COSY) and two-dimensional nuclear Overhauser effect (NOE) spectra. Analysis of sums of coupling constants in one-dimensional NMR spectra, cross peak patterns in dQF COSY spectra and inter proton distances shows that the DNA sequence assumes a conformation close to the B-DNA family. The deoxyribose sugar conformation is in dynamic equilibrium with predominantly S-type conformer and a minor N-type conformer with N<-->S equilibrium varying with temperature. At 325 K, the mole fraction of the N-conformer increases for some of the residues by approximately 9%. Using a total of 10 spin-spin coupling constants and 112 NOE intensities, structural refinement has been carried out using Restrained Molecular Dynamics (rMD) with different starting structures, potential functions and rMD protocols. It is observed that pseudorotation phase angle of deoxyribose sugar for A3 and T4 residues is approximately 180 degrees and approximately 120 degrees, respectively while all other residues are close to C2'endo-conformation. A large propeller twist (approximately -18 degrees) and smallest twist angle (approximately 31 degrees) at A3pT4 step, in the middle of the sequence, a wider (12 A) and shallower (3.0 A) major groove with glycosidic bond rotation as high anti at both the ends of hexanucleotide are observed. The structure shows base-sequence dependent variations and hence strong local structural heterogeneity, which may have implications in ligand binding.  相似文献   

15.
Residual dipolar couplings (RDC) between nuclear spins in partially aligned samples offer unique insights into biomacromolecular structure and dynamics. To fully benefit from the RDC data, accurate knowledge of the magnitude ( D (a)) and rhombicity ( R ) of the molecular alignment tensor, A, is important. An extended histogram method (EHM) is presented which extracts these parameters more effectively from dipolar coupling data. The method exploits the correlated nature of RDCs for structural elements of planar geometry, such as the one-bond (13)C'(i)-(13)C(i)(alpha), (13)C'(i)-(15)N(i+1), and (15)N(i+1)-(1)H(N)(i+1) couplings in peptide bonds of proteins, or suitably chosen combinations of (1) D (C1'H1'), (1) D (C2'H2'), (1) D (C1'C2'), (2) D (C2'H1'), (2) D (C1'H2'), and (3) D (H1'H2') couplings in nucleic acids, to generate an arbitrarily large number of synthetic RDCs. These synthetic couplings result in substantially improved histograms and resulting values of D (a) and R, compared with histograms generated solely from the original sets of correlated RDCs, particularly when the number of planar fragments for which couplings are available is small. An alternative method, complementary to the EHM, is also described, which uses a systematic grid search procedure, based on least-squares fitting of sets of correlated RDCs to structural elements of known geometry, and provides an unambiguous lower limit for the degree of molecular alignment.  相似文献   

16.
A comparative 270 MHz NMR spectroscopic study on the solution structure of the dimer d(TpT) 1, and its two analogues, namely, d(TpST) 2, and NH2d(TcmT) 4 has been reported. Analysis of chemical shifts and coupling constants indicate that: (i) The sugar moieties of the constituent nucleotides are not affected by modification of the internucleotide linkages and adopt preferentially an S-type conformation. (ii) The C4'-C5' bond in the pT part of the modified dimers 2 and 4 shows a large conformational freedom (gamma+ = 32% and 35%, respectively) compared to 1 (gamma+ = 75%). (iii) The population of the trans conformer about C5'-O5' is less important in d(TpST) 2 compared to d(TpT) 1. (iv) The C3'-O3' bond in 2 adopts a trans conformation as in 1. (v) The glycosidic bonds in the modified dimers 2 and 4 showed preferential syn conformation. UV and CD data show that the modified dimers 2 and 4 have poor tendency to stack intramolecularly, they also base pair less efficiently with d(ApA) as compared to d(TpT) 1.  相似文献   

17.
A De Marco  M Llinás 《Biochemistry》1979,18(18):3846-3854
Polypeptides and proteins in native conformation exhibit 13C NMR spectra which are highly nondegenerate. Assignment of resonances to carbons in particular residues is hence a prerequisite for a structural analysis of the spectroscopic data. For nonprotonated carbonyl carbons, the assignment can be achieved by selective (1H alpha)13C' 2J decoupling. Using this method, we have assigned the Orn1 and Gly2 carbonyl resonances in alumichrome at 67.9 MHz. We show that a single off-resonance experiment with the decoupling frequency centered in the aliphatic proton spectrum is sufficient to assign unequivocally all the protonated carbon resonances via analysis of the reduced 1J heteronuclear splittings. Alumichrome thus becomes the first complex polypeptide spin system whose 1H, 15N, and now 13C nuclear resonances have been fully identified to date. 13C chemical shifts and 1H--13C spin--spin couplings are discussed in terms of structural strain leading to specific orbital hybridizations and on the basis of polarization effects due to electron density shifts toward hydrogen-bonding and metal-binding sites. A number of 3J(13C--C--C--1H) coupling constants measured on selected multiplets after resolution enhancement were used to derive the x-related Karplus relationship 3J(theta) = (10.2 cos2 theta -- 1.3 cos theta + 0.2) Hz.  相似文献   

18.
Although alpha-nucleosides are not found in nucleic acid, they do occur as constituents of smaller molecules in living cells, e.g., in vitamin B(12). There are now several examples of alpha-nucleosides exerting a biological activity in some instances equal to, or even exceeding, that of the corresponding beta-anomer. Examples include growth inhibitory properties against mouse leukemia cells and antitumor activity. From stereochemical point of view, alpha-anomers serve as references for studying of interaction of the base with the sugar moiety in beta-anomers and may help in better understanding of structure-activity relationships. One important problem preventing conformational analysis of alpha nucleosides is uncertainty in the determination of vicinal coupling constants from simulation of overlapping sugar proton resonances of strongly coupled spin systems. A successful resolution of near-isochronous H3' and H4' resonances made possible a full conformational analysis for a series of alpha-anomers C5-substituted 2'-deoxyuridines, including methyl, ethyl, isopropyl, fluor, vinyl, and bromovinyl, in comparison to their beta counterparts. Conformation of the sugar ring is determined from proton-proton coupling constants and described in terms of pseudorotation between two main puckering domains C2'endo (S) and C3'endo (N). A thorough analysis of chemical shifts as well as conformation of the sugar ring and C4'-C5' rotamers made possible determination of conformational preferences in equilibrium about the glycosidic bond between two regions, anti and syn. This work provides insights into the role of anomeric configuration of the base in conformational behavior of the sugar moiety, a link in the backbone of nucleic acids.  相似文献   

19.
31p-1H and 1H-1H chemical shift correlation spectroscopy are jointly used for providing a complete assignment of sugar proton (except H5' and H5") and phosphorus resonances in the double stranded oligonucleotide d (ATGCAT)2. In contrast to previous methods the specific assignment of overcrowded H5' H5" proton resonances is not required. Using the H3'-P coupling and also the long range H4'-P coupling, this quite general method can be easily implemented on intermediate field spectrometer. The present results pave the way to the 1H and 31P resonance assignment of longer double-stranded oligonucleotides.  相似文献   

20.
B Bendiak 《Carbohydrate research》1999,315(3-4):206-221
Peracetylation of free hydroxyl groups in model saccharides with [13C-carbonyl]acetic anhydride resulted in additional splittings of sugar ring proton signals in NMR spectra, due to 3-bond J couplings between each acetyl carbonyl carbon and a sugar ring proton at that position. Quantification of 144 of these 3-bond coupling constants in different saccharide structures showed a range between 2.5 and 4.7 Hz, whereas all possible 4-bond couplings between sugar ring protons and acetyl carbonyl carbons were within linewidth (< 0.5 Hz). Therefore, further splitting of sugar ring proton signals in the range of 2.5-4.7 Hz upon acetylation with a [13C-carbonyl]acetyl group identifies that position as (formerly) having a free hydroxyl group. This performs the same basic function as permethylation analysis, but does not require hydrolysis of glycosidic linkages. Additionally, proton-detected 2D heteronuclear multiple bond correlation (HMBC) experiments or proton-detected heteronuclear correlation spectroscopy (hetCOSY) enabled ring proton-carbonyl-13C 3-bond J connectivities to be correlated with high sensitivity. Modified NMR pulse sequences are reported that include frequency selective decoupling schemes to enable coupling constants to be determined from 2D data. The tailored pulse sequences resulted in higher spectral resolution and sensitivity for [13C-carbonyl]-ring proton correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号