首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
E.M. Home   《Tissue & cell》1975,7(4):703-722
On dark-adaptation of the 11-day adult eye, the rhabdomers move towards the cuticle. Each c-c-r array (of tandem centrioles and ciliary root) maintains its position relative to the rhabdomere, and the length of the root is apparently unchanged. The close association of the array with the rhabdomere is not established until after the first day of adult life. The array is already present at the time of pupation. The distal centriole subsequently becomes the basal body of a transitory ciliary bud, whole formation apparently precedes the onset of rhabdomere differentiation.  相似文献   

3.
Summary Developing cilia and non-ciliated centrioles are both present in the rat choroid cell studied with the electron microscope. The development of the cilium begins with the appearance of a thick-walled vesicle close to the centriole or in contact with it. Very soon this vesicle lines the distal extremity of the centriole. The growing ciliary shaft invaginates the vesicle, forming a temporary ciliary sheath. This sheath isolates the growing cilium from its environment.Degenerating ciliary shafts are by no means rare. They are interpreted as evidence of a biological cycle of the cilia. Club-shaped forms are also frequent.Non-ciliated centrioles are sometimes in contact with striated structures consisting of alternating dark and light bands, separated by a distance of 600 Å. These formations (treillis) are different from the pericentriolar satellites. On morphological grounds, they might be considered as centriole precursors.  相似文献   

4.
The morphogenesis of the outer segments of retinal rods was studied mainly in the kitten before the opening of the eye, and the probable sequence of the morphogenetic stages is deduced. Since the development of retinal rods is not synchronous, the deductions were based on observations of many single and serial sections. One centriole extends ciliary tubules of about 0.5 µ long, in the growing primitive cilium. Beyond this length, each ciliary tubule becomes a row of small vesicles (called "ciliary vesicles" in this paper), which penetrate into the distal region of the cilium. Where the ciliary vesicles establish contact with the plasma membrane of the distal region of the cilium, more or less deep infoldings of the plasma membrane are observed. In the distal region can be seen rows of tubular or vesicular structures. A few of these membranous structures are continuous with the bottoms of the infoldings. At the following stage, the infoldings disappear and the ciliary vesicles lose contact with the distal plasma membrane. Nonetheless, the formation of the tubular structures continues in the distal region of the primitive outer segment. The tubular structures appear to be transformed into the primitive rod sacs by sidewise enlargement. At a subsequent time, presumably, these primitive rod sacs flatten and are rearranged into a position perpendicular to the long axis of the outer segment. The detailed structure of the basal body of the connecting cilium was also studied by means of serial sections.  相似文献   

5.
Centrioles in the cell cycle. I. Epithelial cells   总被引:20,自引:14,他引:6       下载免费PDF全文
A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated perpendicular to the spindle axis. At the beginning of the G1 period, pericentriolar satellites are formed on the mother centriole with microtubules attached to them; the two centrioles diverge. The structures of the two centrioles differ throughout interphase; the mother centriole has appendages, the daughter does not. Replication of the centrioles occurs approximately in the middle of the S period. The structure of the procentrioles differs sharply from that of the mature centriole. Elongation of procentrioles is completed in prometaphase, and their structure undergoes a number of successive changes. In the G2 period, pericentriolar satellites disappear and some time later a fibrillar halo is formed on both mother centrioles, i.e., spindle poles begin to form. In the cells that have left the mitotic cycle (G0 period), replication of centrioles does not take place; in many cells, a cilium is formed on the mother centriole. In a small number of cells a cilium is formed in the S and G2 periods, but unlike the cilium in the G0 period it does not reach the surface of the cell. In all cases, it locates on the centriole with appendages. At the beginning of the G1 period, during the G2 period, and in nonciliated cells in the G0 period, one of the centrioles is situated perpendicular to the substrate. On the whole, it takes a mature centriole a cycle and a half to form in PE cells.  相似文献   

6.
The primary cilium: keeper of the key to cell division   总被引:8,自引:0,他引:8  
Pan J  Snell W 《Cell》2007,129(7):1255-1257
Assembly of the nonmotile primary cilium of vertebrate cells requires one of the centrioles of the centrosome. A cluster of new studies, including one in this issue of Cell by Pugacheva et al. (2007), reveal that ciliary assembly proteins influence cell-cycle progression and that a centrosomal "mitotic kinase" promotes ciliary disassembly. The link between the cell cycle and the primary cilium may reflect a requirement for liberation of the ciliary centriole to allow the centrosome to form the mitotic spindle.  相似文献   

7.
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.  相似文献   

8.
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.  相似文献   

9.
Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.  相似文献   

10.
Pericentriolar processes (arm-like fibers) of the migrating centrioles (diplosome) in differentiating retinal photoreceptor cells were examined in six mammalian species (hamster, vole, rat, rabbit, ferret, cat). These processes emanate in a radial fashion from one end of the centrioles comprising the photoreceptor diplosome. The pericentriolar processes of the basal body are first observed as the diplosome migrates toward the apical plasmalemma, suggesting that centrioles are committed early-on to developing such processes. One pericentriolar process arises from each set of microtubular triplets comprising the centriole and are apicoexternally oriented at an angle of between 30 and 60 degrees with the centriolar axis. Prior to the arrival of one of the centrioles at the apical plasmalemma these processes connect with an electron-dense portion of a centriole-associated vacuole. The diplosome migrates to the apical plasmalemma where one centriole (the presumptive basal body) orients perpendicularly to the apical plasmalemma. The centriole-associated vacuole appears to fuse with the plasmalemma. The pericentriolar processes appear to attach to this fusion site on the plasmalemma which is a region of the membrane characterized by increased electron density (the basilar plate). Invagination of the apical membrane, which occurs at this same site, is accompanied by a lengthening of the microtubules forming a cilium and is observed as an outpouching of the plasmalemma within the aforementioned invagination. The associated vacuole apparently becomes continuous with the apical plasmalemma. These pericentriolar processes appear to be functionally involved in ciliogenesis and offer structural stability between the basal body, the plasmalemma and indirectly the cilium.  相似文献   

11.
M.C. Holley 《Tissue & cell》1982,14(4):607-620
The ciliary basal apparatus in the pharynx of the sea anemone, Calliactis parasitica (Couch), is composed of two centrioles, a single striated rootlet at least 20 microns long, and a basal foot, to the tip of which is attached a bundle of microtubules leading to the rootlet. When the basal apparatus is sectioned in the plane of the ciliary power-stroke, the distal centriole, with which the cilium base is continuous, is rarely found to be erect. The orientation of the distal centriole is determined by bending in the basal apparatus. Bending occurs only in the plane of the ciliary power-stroke towards the side from which the basal foot projects, and it is closely correlated with membrane buckling in the belt desmosome region of the cell apex. Associated with the belt desmosome, but not directly with the basal apparatus, are bundles of filaments. These filaments are of two size classes, 5-6 and 10 nm in diameter. A model is presented in which the 5-6 nm filaments form the basis of a contractile system which mediates membrane buckling in the region of the belt desmosome. This action effectively shortens the cell apex and thus forces the apparatus to bend. The precise reorientation of the distal centriole is a result of the mechanical properties of the basal apparatus.  相似文献   

12.
Serial ultrathin sections were used to study the formation of the primary cilium and the centriolar apparatus, basal body, and centriole in the neuroepithelial primordial cell of the embryonic nervous system in the mouse. At the end of mitosis, the centrioles seem to migrate toward the ventricular process of the neuroepithelial cell, near the ventricular surface. One of these centrioles, the nearest to the ventricular surface, begins to mature to form a basal body, since its tip is capped by a vesicle probably originating in the cytoplasm. This vesicle fuses with the plasmalemma and the cilium growth by the centrifugal extension of the 9 sets of microtubule doublets. These 9 sets invade the thick base of the cilium which is initially capped by a ball-shaped tip with the appearance of a mushroom cilium. The secondary extension of 7, then 5, and finally 2 sets of microtubule doublets contribute to form the tip of the mature cilium, which is associated with a mature centriolar apparatus formed by a basal body and a centriole. Centriologenesis occurs before mitosis and is concomitant with the progressive resorption of the cilium. The daughter centriole, or procentriole, begins to take form near the tips of fibrils that extend perpendicularly and at a short distance from the wall of the parent centriole. Osmiophilic material accumulates around these fibrils, and gives rise to the microtubules of the mature daughter centriole. These centrioles formed by a centriolar process are further engaged in mitosis, after the total resorption of the cilium. This pattern of development suggests that in the primordial cells of the embryonic nervous system, centriologenesis and ciliogenesis are 2 independent phenomena.  相似文献   

13.
Cavalier-Smith T  Lewis R  Chao EE  Oates B  Bass D 《Protist》2008,159(4):591-620
Sainouron are soil zooflagellates of obscure taxonomy. We studied the ultrastructure of S. acronematica sp. n. and sequenced its extremely divergent 18S rDNA and that of Cholamonas cyrtodiopsidis (here grouped as new family Sainouridae) to clarify their phylogeny. Ultrastructurally similar, they weakly group together, deeply within Monadofilosa. Sainouron has three cytoplasmic microtubules; all organelles specifically link to them or the nucleus. Mature centrioles have fibrous rhizoplasts. The posterior centriole bearing the motile cilium (with cortical filaments) has a transitional hub-lattice; a dense spiral fibre links its thicker rhizoplast and triplets; its ciliary root has two microtubules: mt1, underlying the plasma membrane, initiates at the spiral fibre; mt2, laterally attached to mt1 and nucleus, initiates in the amorphous centrosomal region. The anterior younger cilium, an immotile stub with submembrane skeleton as in Cholamonas, lacks axoneme, microtubular root, rhizoplasts and spiral fibre, but becomes the posterior one every cell cycle. The nuclear envelope donates coated vesicles directly to the Golgi, which makes kinetocyst-type extrusomes, concentrated at the cell anterior for extrusion into phagosomes. Ciliary transition region proximal hub-lattices (postulated to contain centrin) and distal nonagonal fibres are cercozoan synapomorphies, found with slight structural variation in all flagellate Cercozoa, but not in outgroups.  相似文献   

14.
In the epithelial cells of mouse embryo renal channels, centrioles are located near the plasma membrane of the apical part of the cell. In most of the cells an active centriole carries a cilium, which comes out into the channel lumen. In the epithelial cells, suspended after trypsinisation and in single cells adhering to the substrate, the centrioles are located near the nucleus, and the outcoming cilia are not observed. In the spread cells of epithelial islets, the centrioles are also found near the nucleus, and in most cases an active centriole carries a cilium, which comes out of the cytoplasm at the upper side of the cell. In the peripheral cells of the islet, centrioles are positioned between the nucleus and the active edge of the cell. In the epithelial cells in situ, a relatively small number of microtubules radiate from the active centrioles. In the suspended cells, the activation of microtubule formation is observed in the cell center. In the spread cells of the epithelial islets there occurs a further increase in the number of microtubules radiating from the active centrioles. In the peripheral cells which cause translocation of the epithelial islet in the culture, the number of microtubules, radiating from the centrioles does not differ significantly from that of the inner cells of the islet. The cell center of the epithelial cells does not seem to be actively involved in the locomotion of the epithelial cells in the culture.  相似文献   

15.
Nigg EA  Stearns T 《Nature cell biology》2011,13(10):1154-1160
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.  相似文献   

16.
Primary cilium development along with other components of the centrosome in mammalian cells was analysed ultrastructurally and by immunofluorescent staining with anti-acetylated tubulin antibodies. We categorized two types of primary cilia, nascent cilia that are about 1microm long located inside the cytoplasm, and true primary cilia that are several microm long and protrude from the plasma membrane. The primary cilium is invariably associated with the older centriole of each diplosome, having appendages at the distal end and pericentriolar satellites with cytoplasmic microtubules emanating from them. Only one cilium per cell is formed normally through G(0), S and G(2)phases. However, in some mouse embryo fibroblasts with two mature centrioles, bicilates were seen. Primary cilia were not observed in cultured cells where the mature centriole had no satellites and appendages (Chinese hamster kidney cells, line 237, some clones of l-fibroblasts). In contrast to primary cilia, striated rootlets were found around active and non-active centrioles with the same frequency. In proliferating cultured cells, a primary cilium can be formed several hours after mitosis, in fibroblasts 2-4 h after cell division and in PK cells only during the S-phase. In interphase cells, formation of the primary cilium can be stimulated by the action of metabolic inhibitors and by reversed depolymerization of cytoplasmic microtubules with cold or colcemid treatments. In mouse renal epithelial cells in situ, the centrosome was located near the cell surface and mature centrioles in 80% of the cells had primary cilium protruding into the duct lumen. After cells were explanted and subcultured, the centrosome comes closer to the nucleus and the primary cilium was depolymerized or reduced. Later primary cilia appeared in cells that form islets on the coverslip. However, the centrosome in cultured ciliated cells was always located near the cell nucleus and primary cilium never formed a characteristic distal bulb. A sequence of the developmental stages of the primary cilium is proposed and discussed. We also conclude that functioning primary cilium does not necessarily operate in culture cells, which might explain some of the contradictory data on cell ciliation in vitro reported in the literature.  相似文献   

17.
Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells.   总被引:21,自引:0,他引:21  
R W Tucker  A B Pardee  K Fujiwara 《Cell》1979,17(3):527-535
Both DNA and the centriole pairs are replicated once in each cell generation. The cyclic changes in both must be coordinated so that the two centriole pairs can participate in mitosis when the genetic material is to be partitioned to the two daughter cells. One of the centriole pairs also forms a primary (“9 + 0”) cilium sometime during the cell cycle. In this study, we asked whether some aspects of the coordination of the DNA and centriole cycles occur in G1, a part of the cell cycle when non-neoplastic cells become irreversibly committed to DNA synthesis. We used indirect immunofluorescence with antitubulin antibody to reveal the centriole pairs as a microtubule organizing center with or without a cilium. Quiescent Balb/c and Swiss 3T3 cells in low serum or at high cell density stopped in G1 with ciliated, probably unduplicated centrioles. When these quiescent 3T3 cells were stimulated to enter DNA synthesis, the centriole's ciliation changed in three phases: first, an initial but transient deciliation within 1–2 hr; second, a return of the cilium by 6–8 hr; and third, a subsequent final deciliation of the centriole coincident with the initiation of DNA synthesis at 12–24 hr.The deciliated and duplicated centrioles subsequently separated in preparation for mitosis. Together with other information, these results imply that centrioles in growing mammalian cells are primarily ciliated in a part of G1 during which the cells can arrest in suboptimal environmental conditions. Arrests in low serum or at high cell density also occur before centriole replication. These results suggest that deciliation and duplication of the centriole may occur near the time that quiescent cells become irreversibly committed to DNA synthesis. Certain centriole events may therefore be necessary before DNA synthesis can be initiated in 3T3 cells.  相似文献   

18.
Only one sensory cell type has been observed within the glandular epithelium of the proboscis in the heteronemertine Riseriellus occultus. These bipolar cells are abundant and scattered singly throughout the proboscis length. The apical surface of each dendrite bears a single cilium enclosed by a ring of six to eight prominent microvilli. The cilium has the typical 9×2 + 2 axoneme arrangement and is equipped with a cross-striated vertical rootlet extending from the basal body. No accessory centriole or horizontal rootlet was observed. Large, modified microvilli (stereovilli) surrounding the cilium are joined together by a system of fine filaments derived from the glycocalyx. Each microvillus contains a bundle of actin-like filaments which anchor on the indented inner surface of a dense, apical ring situated beneath the level of the ciliary basal body. The tip of the cilium is expanded and modified to form a bulb-like structure which lies above the level where the surrounding microvilli terminate. In the region where the cilium emerges from the microvillar cone, the membrane of the microvillar apices makes contact with a corresponding portion of the ciliary membrane. At this level microvilli and cilium are apparently firmly linked by junctional systems resembling adherens junctions. The results suggest that these sensory cells may be mechanoreceptors. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Basal bodies are freed from cilia and transition into?centrioles to organize centrosomes in dividing cells. A mutually exclusive centriole/basal body existence during cell-cycle progression has become a widely accepted principle. Contrary to this view, we?show here that cilia assemble and persist through?two meiotic divisions in Drosophila spermatocytes. Remarkably, all four centrioles assemble primary cilia-centriole complexes that transit from the plasma membrane encased in a packet of membrane, recruit centrosomal material into microtubule-organizing centers, and persist at the spindle poles through division. Thus, spermatocyte centrioles organize centrosomes and cilia simultaneously at cell division. These findings challenge the prevailing view that cilia antagonize cell-cycle progression and raise the possibility that cilium retention at cell division may occur in diverse organisms and cell types.  相似文献   

20.
M C Holley 《Tissue & cell》1985,17(3):321-334
Cilia projecting from the surfaces of highly contractile myoepithelia in the sea anemone Metridium senile maintain their basal orientation, and their ability to propel water, at different states of mesentery contraction, despite substantial changes of myoepithelial cell diameter and length. The ciliary basal apparatus in each monociliated myoepithelial cell is structurally well adapted to provide a stable anchorage for the cilium whilst compensating for these shape changes. It is composed of a distal centriole (basal body), a proximal centriole, a striated rootlet 2-3 micron long which is composed of a bundle of 4-6 nm filaments, and an arched rootlet, also striated, which is composed of a relatively loose bundle of 9-11 nm filaments. A single basal foot projects from the side of the distal centriole in the same direction as the path of the cilium during an effective-stroke; its tip is a focus for many microtubules that radiate outward in all directions toward the cell membrane. The arched rootlet forms a single arch in the cell apex, also in the same plane as the path of the cilium during an effective-stroke. The central axis of the basal apparatus, that is through the distal centriole and the striated rootlet, passes through the apex of the arch. The arched rootlet is apparently flexible so that it can increase or decrease its span as the cell increases or decreases in diameter. In pharnyx and siphonoglyph cells from M. senile, which do not undergo great changes in diameter or length, there is no arched rootlet, and the striated rootlet is much longer. The broad structural diversity of the metazoan ciliary basal apparatus must to a large extent be related to the diversity of the structural and mechanical properties of the cells in which it occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号