首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene.  相似文献   

2.
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn(2+) at low μM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn(2+) concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn(2+) acts to "twist tie" the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn(2+) site only slightly affected Zn(2+) inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn(2+) sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.  相似文献   

3.
Combinatorial codon-based amino acid substitutions   总被引:1,自引:0,他引:1       下载免费PDF全文
Twenty Fmoc-protected trinucleotide phosphoramidites representing a complete set of codons for the natural amino acids were chemically synthesized for the first time. A pool of these reagents was incorporated into oligonucleotides at substoichiometric levels to generate two libraries of variants that randomly carry either few or many codon replacements on a region encoding nine amino acids of the bacterial enzyme TEM-1 β-lactamase. Assembly of the libraries was performed in a completely automated mode through a simple modification of ordinary protocols. This technology eliminates codon redundancy, stop codons and enables complete exploration of sequence space for single, double and triple mutations throughout a protein region spanning several residues. Sequence analysis of many non-selected clones revealed a good incorporation of the trinucleotides, producing combinations of mutations quite different from those obtained using conventional degenerate oligonucleotides. Ceftazidime-selection experiments yielded several never before reported variants containing novel amino acid combinations in the β-lactamase omega loop region.  相似文献   

4.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalyzes the second step of the reaction. Previous studies demonstrated that alternative splicing results in the production of bifunctional PAM proteins that are integral membrane or soluble proteins as well as soluble monofunctional PHM proteins. Rat PAM is encoded by a complex single copy gene that consists of 27 exons and encompasses more than 160 kilobases (kb) of genomic DNA. The 12 exons comprising PHM are distributed over at least 76 kb genomic DNA and range in size from 49-185 base pairs; four of the introns within the PHM domain are over 10 kb in length. Alternative splicing in the PHM region can result in a truncated, inactive PHM protein (rPAM-5), or a soluble, monofunctional PHM protein (rPAM-4) instead of a bifunctional protein. The eight exons comprising PAL are distributed over at least 19 kb genomic DNA. The exons encoding PAL range in size from 54-209 base pairs and have not been found to undergo alternative splicing. The PHM and PAL domains are separated by a single alternatively spliced exon surrounded by lengthy introns; inclusion of this exon results in the production of a form of PAM (rPAM-1) in which endoproteolytic cleavage at a paired basic site can separate the two catalytic domains. The exon following the PAL domain encodes the trans-membrane domain of PAM; alternative splicing at this site produces integral membrane or soluble PAM proteins. The COOH-terminal domain of PAM is comprised of a short exon subject to alternative splicing and a long exon encoding the final 68 amino acids present in all bifunctional PAM proteins along with the entire 3'-untranslated region. Analysis of hybrid cell panels indicates that the human PAM gene is situated on the long arm of chromosome 5.  相似文献   

5.
Beta-lactamase inhibitory protein (BLIP) binds tightly to several beta-lactamases including TEM-1 beta-lactamase (K(i) 0.1 nm). The TEM-1 beta-lactamase/BLIP co-crystal structure indicates that two turn regions in BLIP insert into the active site of beta-lactamase to block the binding of beta-lactam antibiotics. Residues from each turn, Asp(49) and Phe(142), mimic interactions made by penicillin G when bound in the beta-lactamase active site. Phage display was used to determine which residues within the turn regions of BLIP are critical for binding TEM-1 beta-lactamase. The sequences of a set of functional mutants from each library indicated that a few sequence types were predominant. These BLIP mutants exhibited K(i) values for beta-lactamase inhibition ranging from 0.01 to 0.2 nm. The results indicate that even though BLIP is a potent inhibitor of TEM-1 beta-lactamase, the wild-type sequence of the active site binding region is not optimal and that derivatives of BLIP that bind beta-lactamase extremely tightly can be obtained. Importantly, all of the tight binding BLIP mutants have sequences that would be predicted theoretically to form turn structures.  相似文献   

6.
T Palzkill  D Botstein 《Proteins》1992,14(1):29-44
A new analytical mutagenesis technique is described that involves randomizing the DNA sequence of a short stretch of a gene (3-6 codons) and determining the percentage of all possible random sequences that produce a functional protein. A low percentage of functional random sequences in a complete library of random substitutions indicates that the region mutagenized is important for the structure and/or function of the protein. Repeating the mutagenesis over many regions throughout a protein gives a global perspective of which amino acid sequences in a protein are critical. We applied this method to 66 codons of the gene encoding TEM-1 beta-lactamase in 19 separate experiments. We found that TEM-1 beta-lactamase is extremely tolerant of amino acid substitutions: on average, 44% of all mutants with random substitutions function and 20% of the substitutions are expressed, secreted, and fold well enough to function at levels similar to those for the wild-type enzyme. We also found a few exceptional regions where only a few random sequences function. Examination of the X-ray structures of homologous beta-lactamases indicates that the regions most sensitive to substitution are in the vicinity of the active site pocket or buried in the hydrophobic core of the protein. DNA sequence analysis of functional random sequences has been used to obtain more detailed information about the amino acid sequence requirements for several regions and this information has been compared to sequence conservation among several related beta-lactamases.  相似文献   

7.
The complete nucleotide sequences of the vesicular stomatitis virus (VSV) mRNA's encoding the N and NS proteins have been determined from the sequences of cDNA clones. The mRNA encoding the N protein is 1,326 nucleotides long, excluding polyadenylic acid. It contains an open reading frame for translation which extends from the 5'-proximal AUG codon to encode a protein of 422 amino acids. The N and mRNA is known to contain a major ribosome binding site at the 5'-proximal AUG codon and two other minor ribosome binding sites. These secondary sites have been located unambiguously at the second and third AUG codons in the N mRNA sequence. Translational initiation at these sites, if it in fact occurs, would result in synthesis of two small proteins in a second reading frame. The VSV and mrna encoding the NS protein is 815 nucleotides long, excluding polyadenylic acid, and encodes a protein of 222 amino acids. The predicted molecular weight of the NS protein (25,110) is approximately one-half of that predicted from the mobility of NS protein on sodium dodecyl sulfate-polyacrylamide gels. Deficiency of sodium dodecyl sulfate binding to a large negatively charged domain in the NS protein could explain this anomalous electrophoretic mobility.  相似文献   

8.
A novel parental bla(TEM) gene (bla(TEM-1G)), encoding a TEM-1 beta-lactamase (pI of 5.4) produced by the uropathogenic Escherichia coli strain FMV194 was isolated from a dog. We report PCR-restriction fragment length polymorphism analysis and nucleotide sequencing of this gene. The bla(TEM-1G) sequence was identical to the bla(TEM-1C) gene framework in the coding and promoter (P3) regions, except for a silent G(604)-->T mutation in the coding region. Molecular phylogenetic analysis of parental bla(TEM) genes indicated two distinct groups, one comprising bla(TEM-1F) and bla(TEM-2). The other group comprises bla(TEM-1C) which is the probable ancestor of bla(TEM-1A), bla(TEM-1D) and bla(TEM-1G). The bla(TEM-1G) gene has the same framework as a gene encoding an inhibitor-resistant TEM beta-lactamase produced by an E. coli strain of human origin. Thus, parental bla(TEM) genes encoding beta-lactamases in E. coli strains isolated from different host species, in this case human and canine, may be phylogenetically very close.  相似文献   

9.
Resistance of Escherichia coli strain HB251 to the newer beta-lactam antibiotics, in particular ceftazidime and aztreonam, results from production of the extended-spectrum beta-lactamase TEM-6. The corresponding structural gene, bla(T)-6, and its promoter region were amplified by the polymerase chain reaction. Analysis of the sequence of the amplification product showed that bla(T)-6 differed by two nucleotide substitutions from bla(T)-1, the gene encoding TEM-1 penicillinase in plasmid pBR322. The mutations led to the substitution of a lysine for a glutamic acid at position 102 and of a histidine for an arginine at position 162 of the unprocessed TEM-1 protein. The presence of a 116 bp DNA insert upstream from bla(T)-6 resulted in the creation of hybrid promoter P6 in which the -10 region was that of TEM-1 promoter P3 whereas the -35 canonical sequence TTGACA was provided by the right end of the insert. P6 was found to be 10 times more active than P3 and to confer higher levels of antibiotic resistance upon the host. Analysis of the sequence of the insert indicated that the 116 bp fragment is related to insertion sequence IS1 but differs from it by three internal deletions that removed regions encoding the transposase. The distribution of the IS1-like element in clinical isolates of Enterobacteriaceae was studied by the polymerase chain reaction and by DNA-DNA hybridization. The element appeared to be widespread and was detected in strains producing TEM-6 or other TEM variants.  相似文献   

10.
Ko KS  Hong SK  Lee HK  Park MY  Kook YH 《Journal of bacteriology》2003,185(21):6269-6277
The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences of dotA, which suggests that multiple hits, resulting in synonymous substitutions, have occurred. Gene phylogenies inferred from three different segments (the 5'-end region, the central, large periplasmic domain, and the 3'-end region) showed impressively dissimilar topologies. This was concordant with the sequence polymorphisms, indicating that each region has experienced an independent evolutionary history, and was evident even within the same domain of each strain. For example, the PP2 domain was found to have a heterogeneous structure, which led us hypothesize that the dotA gene of L. pneumophila may have originated from two or more different sources. Comparisons of synonymous and nonsynonymous substitutions demonstrated that the PP2 domain has been under strong selective pressure with respect to amino acid change. Split decomposition analysis also supported the intragenic recombination of dotA. Multiple recombinational exchange within the dotA gene, encoding an integral cytoplasmic membrane protein that is secreted, probably provided increased fitness in certain environmental niches, such as within a particular biofilm community or species of amoebae.  相似文献   

11.
We describe the use of molecular probes to detect the TEM-type beta-lactamase genes. As a general probe, we prepared a 656 base pair restriction fragment, entirely within the TEM structural gene. This probe was specific for the TEM family, hybridizing only with TEM-1 and TEM-2. The TEM-1 and TEM-2 beta-lactamases differ by only one amino acid. We synthesized two oligonucleotides whose central bases correspond to this difference. The use of these oligonucleotides enables us to discriminate between TEM-1 and TEM-2 genes. Using oligonucleotides homologous to parts of Tn3, we also monitored the presence of TnA-like transposons in bacteria harboring different beta-lactamase genes. Only the TEM-1 and TEM-2 genes were found to be on transposons with terminal sequences identical to those of Tn3. All hybridization experiments were performed with both dot-blot and colony-hybridization techniques, and the suitability of these two methods for epidemiological studies is compared.  相似文献   

12.
C Montell  G M Rubin 《Cell》1988,52(5):757-772
The fruit fly Drosophila melanogaster has been extensively used to identify genes required for photoreceptor cell function. We show that the ninaC gene, originally isolated as a Drosophila visual mutation with an electrophysiological phenotype, encodes two novel cytoskeletal proteins. We identified the DNA sequences encoding the ninaC gene by rescuing the electrophysiological phenotype using P-element-mediated germ line transformation. The ninaC locus is expressed as two extensively overlapping mRNAs encoding proteins of 1135 and 1501 amino acids. Both proteins contain a putative protein kinase domain joined to a domain homologous to the head region of the myosin heavy chain and are spatially restricted to photoreceptor cells.  相似文献   

13.
14.
Creation of an allosteric enzyme by domain insertion   总被引:4,自引:0,他引:4  
Two allosteric enzymes have been created by the covalent linkage of non-interacting, monomeric proteins with the prerequisite effector-binding and catalytic functionalities, respectively. This was achieved through a combinatorial process called random domain insertion. The fragment of the TEM-1 beta-lactamase gene coding for the mature protein lacking its signal sequence was randomly inserted into the Escherichia coli maltose-binding protein (MBP) gene to create a domain insertion library. This library's diversity derived both from the site of insertion and from a distribution of tandem duplications or deletions of a portion of the MBP gene at the insertion site. From a library of approximately 2 x 10(4) in-frame fusions, approximately 800 library members conferred a phenotype to E.coli cells that was consistent with the presence of bifunctional fusions that could hydrolyze ampicillin and transport maltose in E.coli. Partial screening of this bifunctional sublibrary resulted in the identification of two enzymes in which the presence of maltose modulated the rate of nitrocefin hydrolysis. For one of these enzymes, the presence of maltose increased k(cat) by 70% and k(cat)/K(m) by 80% and resulted in kinetic parameters that were almost identical to TEM-1 beta-lactamase. Such an increase in activity was only observed with maltooligosaccharides whose binding to MBP is known to induce a conformational change. Modulation of the rate of nitrocefin hydrolysis could be detected at maltose concentrations less than 1 microM. Intrinsic protein fluorescence studies were consistent with a conformational change being responsible for the modulation of activity.  相似文献   

15.
Eckhard Kaufmann 《Chromosoma》1993,102(3):174-179
In a search for gene products of Saccharomyces cerevisiae interacting with the internal promoter of yeast tRNA genes two genes encoding a homeodomain protein of the Drosophila Antennapedia type were isolated. One of them codes for Pho2, and the second codes for a previously unknown protein (Yox1). The corresponding gene, termed YOX1, maps to chromosome 16. The amino acid sequence of Yox1 shows a remarkable similarity within the homeobox domain to many proteins from a wide variety of sources. Fusion proteins that contain sequences encoded by these genes demonstrate that the genes encode DNA-binding proteins that are capable of binding to the DNA of the leucine tRNA gene in vitro. However, deletion of YOX1 gene activity does not give rise to a scorable mutant phenotype. This result leaves open whether Yox1 binding to the leucine tRNA gene is necessary for the in vivo regulaiton of the gene and its suggests that the YOX1 gene codes for a nonessential product.by H. JäckleThe sequence data reported here will appear in the EMBL, Gen-Bank and DDBJ Nucleotide Sequence Databases under the accession number X62392  相似文献   

16.
Garcia B  Stollar EJ  Davidson AR 《Genetics》2012,191(4):1199-1211
Saccharomyces cerevisiae Actin-Binding Protein 1 (Abp1p) is a member of the Abp1 family of proteins, which are in diverse organisms including fungi, nematodes, flies, and mammals. All proteins in this family possess an N-terminal Actin Depolymerizing Factor Homology (ADF-H) domain, a central Proline-Rich Region (PRR), and a C-terminal SH3 domain. In this study, we employed sequence analysis to identify additional conserved features of the family, including sequences rich in proline, glutamic acid, serine, and threonine amino acids (PEST), which are found in all family members examined, and two motifs, Conserved Fungal Motifs 1 and 2 (CFM1 and CFM2), that are conserved in fungi. We also discovered that, similar to its mammalian homologs, Abp1p is phosphorylated in its PRR. This phosphorylation is mediated by the Cdc28p and Pho85p kinases, and it protects Abp1p from proteolysis mediated by the conserved PEST sequences. We provide evidence for an intramolecular interaction between the PRR region and SH3 domain that may be affected by phosphorylation. Although deletion of CFM1 alone caused no detectable phenotype in any genetic backgrounds or conditions tested, deletion of this motif resulted in a significant reduction of growth when it was combined with a deletion of the ADF-H domain. Importantly, this result demonstrates that deletion of highly conserved domains on its own may produce no phenotype unless the domains are assayed in conjunction with deletions of other functionally important elements within the same protein. Detection of this type of intragenic synthetic lethality provides an important approach for understanding the function of individual protein domains or motifs.  相似文献   

17.
18.
Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disorder caused by a trinucleotide expansion in the SCA2 gene, encoding a polyglutamine stretch in the gene product ataxin-2 (ATX2), whose cellular function is unknown. However, ATX2 interacts with A2BP1, a protein containing an RNA-recognition motif, and the existence of an interaction motif for the C-terminal domain of the poly(A)-binding protein (PABC) as well as an Lsm (Like Sm) domain in ATX2 suggest that ATX2 like its yeast homolog Pbp1 might be involved in RNA metabolism. Here, we show that, similar to Pbp1, ATX2 suppresses the petite (pet-) phenotype of Deltamrs2 yeast strains lacking mitochondrial group II introns. This finding points to a close functional relationship between the two homologs. To gain insight into potential functions of ATX2, we also generated a comprehensive protein interaction network for Pbp1 from publicly available databases, which implicates Pbp1 in diverse RNA-processing pathways. The functional relationship of ATX2 and Pbp1 is further corroborated by the experimental confirmation of the predicted interaction of ATX2 with the cytoplasmic poly(A)-binding protein 1 (PABP) using yeast-2-hybrid analysis as well as co-immunoprecipitation experiments. Immunofluorescence studies revealed that ATX2 and PABP co-localize in mammalian cells, remarkably, even under conditions in which PABP accumulates in distinct cytoplasmic foci representing sites of mRNA triage.  相似文献   

19.
Expansion of trinucleotide repeats (CAG)n and (CGG)n is found in genes responsible for certain human hereditary neurodegenerative diseases. By gel-mobility shift assay, we detected a single-stranded (AGC)n repeat-binding activity primarily in mouse brain extracts and very low or undetectable activity in other tissue extracts. Two (AGC)n-repeat binding proteins, with apparent molecular weights of 44 and 40 kDa, have been purified from mouse adult brain by a DNA affinity column and fast protein liquid chromatography. UV-cross linking of radiolabeled (AGC)n repeats with crude brain extracts and with purified two proteins of 44 and 40 kDa produced identical doublet bands, indicating that these proteins are in fact responsible for the (AGC)n-binding activity in brain extracts. We designated these two proteins TRIP-1 for the 44 kDa protein and TRIP-2 for the 40 kDa protein, where TRIP represents trinucleotide repeat-binding protein. TRIP-1 and TRIP-2 bind to a specific subset of trinucleotide repeat sequences including (AGC)n, (AGT)n, (GGC)n, and (GGT)n repeats but not to various other trinucleotide repeats. A minimum of eight (AGC) trinucleotide repeating units is required for TRIP-1 and -2 recognition and binding. The (AGC)n repeat-binding activity increases in the brain after birth and reaches a plateau within 3 weeks. In the brain, TRIP-1 and TRIP-2 may alter the function of the genes containing the expanded-trinucleotide repeats.  相似文献   

20.
Dynamic mutations in human genes result from unstable trinucleotide repeats embedded within the transcribed region. The changeable nature of these mutations from generation to generation is in contrast to the static inheritance of other single-gene mutational events, e.g. point mutations, deletions, insertions and inversions, typically associated with Mendelian inheritance patterns. Intergenerational instability of dynamic mutations within families has provided an explanation for the genetic anticipation, leading to increasing severity or earlier age of onset in successive generations, associated with certain inherited disorders. While models for genomic instability presume that trinucleotide repeat expansion results from disruption of the DNA replication process, experimental evidence has not yet been obtained in support of this contention. Nevertheless, examples of unstable trinucleotide repeats continue to increase, although not all are associated with a specific phenotype. Five disorders resulting from small-scale expansions of CAG repeats within the protein-coding region are known: spinobulbar muscular atrophy, Huntington’s disease, spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease. A sixth disorder, Haw River syndrome, is allelic to DRPLA. Five folate-sensitive chromosomal fragile sites characterized to date, viz. FRAXA, FRAXE, FRAXF, FRA11B and FRA16A, all have large-scale CGG repeat expansion. Two disorders, fragile X syndrome and FRAXE mental retardation, result from instability of CGG repeats in the 5’ untranslated region ofFMR1 andF M R2 genes respectively. FRA11B lies close to chromosome 1 1q deletion endpoints in many Jacobsen syndrome patients and may be related to the deletion event producing partial aneuploidy for 1lq. Expansion of FRAXF and FRA16A has not been associated with a phenotype. Myotonic dystrophy results from a large-scale CTG expansion in the 3’ untranslated region of the myotonin protein kinase gene while Friedreich’s ataxia has recently been found to have a large-scale GAA repeat in the first intron ofX25. This article reviews the characteristics of trinucleotide repeat disorders and summarizes current understanding of the molecular pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号