首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmission trials of apple proliferation (AP) phytoplasma to healthy apple plants were carried out with Cacopsylla melanoneura (Forster). Both field naturally infected and experimentally infected psyllids were evaluated. The capacity of the different life stages of the insect in transmitting AP was tested. Overwintered adults collected in the orchards were able to transmit AP with a variable efficiency, depending on the infectivity rate of source plants. Experimentally infected nymphs and springtime adults succeeded in the transmission of AP, but the lower number of insect tested and the shorter inoculation period, due to difficulties in rearing the whole cycle of the insect in the laboratory, affected the efficiency. Considering the life history of C. melanoneura, the overwintered adults are the most responsible of the diffusion of AP in apple orchards.  相似文献   

2.
Cacopsylla melanoneura is a univoltine psyllid vector of ‘Candidatus Phytoplasma mali’, the etiological agent of apple proliferation (AP), a severe disease in European apple orchards. The influence of ‘Ca. P. mali’ on the fitness of C. melanoneura was studied. In the spring of 2007, male-female pairs of field-collected adults were exposed to ‘Ca. P. mali’-infected or healthy ‘Golden Delicious’ apple shoots. Exposure to these diseased shoots did not affect the life span of the adult psyllids. However, significantly fewer eggs were laid on the diseased shoots. Furthermore, fewer of the eggs that were laid on the infected plants hatched. Data suggest a detrimental effect of AP phytoplasma on the fitness of C. melanoneura.  相似文献   

3.
Adults of Cacopsylla melanoneura, vector of the apple proliferation (AP) phytoplasma, were collected every 2 weeks from January until May in 2000 and 2001 by the beating tray method in eight apple orchards of the Aosta Valley (northwestern Italy). Total DNA was extracted from batches of five insects and amplified with the universal phytoplasma primers P1/P7 in direct PCR. A nested PCR assay was then performed on P1/P7 amplicons using the primers fO1/rO1, specific for the AP‐ phytoplasma group. The digestion of fO1/rO1 amplicons with Ssp I restriction endonuclease confirmed that C. melanoneura adults harboured the AP phytoplasma. The data obtained with PCR were used to estimate the proportion of AP‐positive insects in over wintered and offspring adults. Percentages of AP‐positive insects of 3.6% and 0.8% were estimated in 2000 among over wintered and offspring psyllids respectively. In 2001 only the over wintered insects were found infected, with an estimated proportion of 2.8%. The seasonal abundance of the vector was measured using yellow sticky traps. C. melanoneura was always present at a low population level, and the highest density was recorded from mid‐February until mid‐March in both years. The results show that the overwintered population is higher and spends a longer period in apple orchards, suggesting the crucial role of the overwintered adults in vectoring AP.  相似文献   

4.
Apple proliferation is a phytoplasma-associated disease transmitted by insects causing serious damage and economic losses to apple orchards. Investigations were carried out in 1999 and 2000 in northwestern Italy to identify the vector of apple proliferation and to study its population dynamics. Yellow sticky traps and beat tray samples revealed the presence of the psyllid Cacopsylla melanoneura (Forster) in eight apple orchards in the Aosta Valley. The species completes one generation per year; the overwintered psyllids colonized apple trees beginning in late January, whereas the springtime generation was observed beginning in early May. The offspring adults remained in apple orchards until the end of June, when they began to move onto other hosts. During 1999 and 2000, all apple trees present in the investigated orchards were visually checked to assess the fluctuation of disease symptoms. Polymerase chain reaction and restriction fragment-length polymorphism confirmed the presence of the apple proliferation phytoplasmas in both overwintering and offspring insects as well as in symptomatic apple plants. The ability of C. melanoneura to vector the disease was assessed by preliminary transmission trials. Overwintered psyllids, collected in the most affected orchards, caged on healthy apple test plants transmitted apple proliferation phytoplasmas.  相似文献   

5.
In the current study, incidence of 'Candidatus Phytoplasma mali' in an experimental apple orchard in northeast Italy, in addition to abundance and phytoplasma infectivity of Cacopsylla melanoneura (F?rster) (Hemiptera: Psyllidae) was determined and the role of this psyllid as a vector of 'Ca. P. mali' in this region was reviewed. Insect samples collected in the orchard by the beating method indicated high abundance of C. melanoneura (up to 7.92 specimens/branch); however, the psyllid C. picta was not observed. Molecular analyses revealed presence of 'Ca. P. mali' in 6.25% of overwintered psyllids. This infection rate is quite high in comparison to other localities where C. melanoneura is known as the main vector of the phytoplasma. This finding supports the assumption that C. melanoneura also is paramount in the epidemiology of the apple proliferation disease also in northeast Italy. Moreover, we correlated immigration dynamics to the temperatures registered in the apple orchard, and defined an immigration index to predict the progressive arrival of the overwintered adults from winter sites. Psyllids start to reach the apple orchards when either the average of the maximum temperature of the 7 d is above 9.5 degrees C or the immigration index has a positive value. This index will be a useful tool for the growers to prevent apple proliferation phytoplasma spread with well-timed insecticide treatments targeted against C. melanoneura. However, further research is needed to validate or adjust the index to other apple growing regions, which may affect more efficacious management of this disease and psyllid vector.  相似文献   

6.
Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.  相似文献   

7.
Experiments with the growth regulator ethephon (2-chloroethylphosphonic acid) were made to stimulate the flower differentiation in the ‘Carola’ and ‘Golden Delicious’ apple cultivars in Pillnitz (GDR) and ‘Jonathan’ and ‘Golden Delicious’ in Ujfehértó (Hungaria). A twofold application of 150 ppm ethephon in June proved most effective. Our results indicate that it is possible to promote flower differentiation in apple trees without growth retardation and fruit thinning.  相似文献   

8.
Symptoms of pear decline (PD) were observed in several pear growing regions of Iran. Pear trees with typical symptoms of PD from Estahban (Fars Province) were examined for phytoplasma infection using polymerase chain reaction (PCR) assay. Graft inoculation of healthy pear trees with scions from diseased trees resulted in production of PD symptoms and transmission of phytoplasma as verified by PCR. Target DNA was amplified from symptomatic pear trees with fO1/rO1, an apple proliferation (AP) group-specific primer pair. Physical and putative restriction fragment length polymorphism (RFLP) analyses of fO1/rO1 primed PCR products showed profiles corresponding to AP group, 16SrX-C subgroup ( Candidatus Phytoplasma pyri). Percent similarity values and phylogenetic analysis of fO1/rO1 primed sequences confirmed that, as a member of AP subclade, Estahban PD phytoplasma has a closer relationship to PD and peach yellow leaf roll phytoplasmas than to AP ( Ca . Phytoplasma mali) and European stone fruit yellows ( Ca . Phytoplasma prunorum) phytoplasmas. This is the first report of PD phytoplasma in the eastern Mediterranean.  相似文献   

9.
  • 1 We elucidated the life cycles of two jumping plant lice species (Hemiptera: Psyllidae): Cacopsylla picta, a vector of the apple proliferation phytoplasma (Candidatus Phytoplasma mali), and Cacopsylla melanoneura, a nonvectoring species in Germany and some neighbouring countries, which may transmit the phytoplasma in one region in Italy.
  • 2 The adults of C. picta reproduce exclusively on apple and migrate soon after emergence (emigrants) to conifers in mountainous regions, and return to apple plants in early spring (remigrants). Cacopsylla melanoneura also uses conifers as overwintering host plants but prefers to reproduce on hawthorn, despite its ability to reproduce on apple.
  • 3 Both psyllid species used chemical cues for the identification of their alternate host plants during migration. Remigrants of C. melanoneura preferred the odour of their main reproduction host plant hawthorn to apple but preferred the odour of apple when experienced by feeding and oviposition. Although emigrants of C. picta reportedly prefer the odour of apple trees infected by Ca. P. mali, the remigrants of both species did not distinguish between the odours of infected or uninfected apple plants.
  • 4 Investigating the distribution of Ca. P. mali in plant species involved in psyllid life cycle revealed that the phytoplasma is specialized on apple.
  • 5 Infection of apple by Ca. P. mali increased mortality and resulted in decreased body size of C. picta offspring.
  • 6 Gravid females of C. picta preferred to oviposit on non‐infected plants.
  • 7 It is concluded that Ca. P. mali indirectly promotes its acquisition from infected plants and transmission to non‐infected plants by behavioural manipulation of its vector C. picta.
  相似文献   

10.
Four of five apple cultivars (Golden Delicious, Red Delicious, McIntosh, Macoun, and Melrose) inoculated with Escherichia coli O157:H7 promoted growth of the bacterium in bruised tissue independent of the date of harvest (i.e., degree of apple ripening) or the source of the apple (i.e., tree-picked or dropped fruit). Apple harvest for this study began 4 September 1998 and ended 9 October, with weekly sampling. Throughout this study, freshly picked (<2 days after harvest) McIntosh apples usually prevented the growth of E. coli O157:H7 for 2 days. Growth of E. coli O157:H7 did occur following 6 days of incubation in bruised McIntosh apple tissue. However, the maximum total cell number was approximately 80-fold less than the maximum total cell number recovered from Red Delicious apples. When fruit was stored for 1 month at 4 degrees C prior to inoculation with E. coli O157:H7, all five cultivars supported growth of the bacterium. For each apple cultivar, the pH of bruised tissue was significantly higher and degrees Brix was significantly lower than the pH and degrees Brix of undamaged tissue regardless of the source. In freshly picked apples, changes in the pH did not occur over the harvest season. Bruised Golden Delicious, McIntosh, and Melrose apple tissue pHs were not significantly different (tree-picked or dropped), and the degrees Brix values of McIntosh, Macoun, and Melrose apple tissue were not significantly different. Single-cultivar preparations of cider did not support growth of E. coli, and the cell concentration of inoculated cider declined over an 11-day test period. The rate of decline in E. coli cell concentration in the McIntosh cider was greater than those in the other ciders tested. The findings of this study suggested that the presence of some factor besides, or in addition to, pH inhibited E. coli growth in McIntosh apples.  相似文献   

11.
Development of powdery mildew (Podosphaera leucotricha) on five popular cultivars of apple, viz., Scarlet Gala, Golden spur, Mollies Delicious, Red Fuzi and Red Chief was studied to determine incidence–severity relationship. The disease was confined primarily to the vegetative terminal shoots early in the season which also traversed later onto other leaves. Several biochemical changes occur in the trees due to fungal/microbial infection. We studied the qualitative/quantitative changes in phenolic acids in apple-powdery mildew pathosystems. Scarlet Gala and Red Chief are very rich in phenolic acids, and had shown resistances to the pathogen but those with low amount of phenolic acids, viz., Golden spur, Mollies Delicious, and Red Fuzi, were highly susceptible. Thus, the quantity of phenolic acids (secondary metabolites) has been taken as a biochemical parameter in screening apple cultivars for resistance/susceptibility against powdery mildew of apple.  相似文献   

12.
Spreading of ESFY Phytoplasmas in Stone Fruit in Catalonia (Spain)   总被引:1,自引:0,他引:1  
A survey was carried out in nine stone fruit commercial orchards located in Barcelona province where plum and apricot trees of different cultivars showing European stone fruit yellows (ESFY) symptoms were present. A 4‐year survey with visual inspection of symptoms in one apricot orchard showed a rather high ESFY disease spread, also in a Japanese plum plantation newly infected plants were detected every year in a similar rate (about 2%). All the inspected symptomatic trees were polymerase chain reaction (PCR) tested and ESFY phytoplasma identity was confirmed by restriction fragment length polymorphism analyses and sequencing of ribosomal DNA amplification products. In apricot plantation the detection of ESFY phytoplasma was also tested on 69 asymptomatic trees sampled in summer 2002. The nested PCR with 16SrX group‐specific primers allowed detection of ESFY phytoplasmas in 50% of the trees that indeed showed symptoms by the next winter (2003). The molecular detection of ESFY phytoplasma in asymptomatic apricot trees indicates the risk of maintaining phytoplasma foci in the fields where eradication is based only on visual inspection.  相似文献   

13.
N. Loi    L. Carraro    R. Musetti    G. Firrao  R. Osler 《Journal of Phytopathology》1995,143(10):581-584
In the Friuli-Venezia Giulia, a region of Italy, where serious epidemics of apple proliferation (AP) are known to occur, varieties resistant to scab (Venturia inaequalis (Cke.) Wint.) are increasingly being used in new orchards. The most important cvs are Florina. Prima and Priscilla. These varieties were cultivated according to organic farming regimes with no insecticides used. The results obtained in two orchards during a 7-year period of investigation indicated that the three varieties resistant to scab are highly susceptible to AP. Florina was most susceptible (high infection rate) to AP while Priscilla was most sensitive (severely affected). The identification of the disease was based on symptom expression, DAPI (4–6-diamidino-2-phenylindole) fluorescence technique, electron microscopy observations and by polymerase chain reaction (PCR). Neither complete spontaneous recovery nor death of AP-infected plants was noticed. The pattern of natural diffusion of AP does not seem to be uniform, the affected trees may be in line or grouped in certain spots of the orchards. This may indicate the activity of a not very mobile vector. It can be concluded that planting of Florina, Prima and Priscilla should be discouraged in areas where AP is a problem, particularly when organic farming regimes are being applied.  相似文献   

14.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   

15.
为了筛选培育对苹果绵蚜(Eriosoma lanigerum Hausmann)的抗性品种,实现持续有效治理苹果绵蚜的目的,通过测定红富士、金帅、昭锦108、秦冠、红将军等5种不同苹果品种春梢生长期被苹果绵蚜危害前后枝条内可溶性糖、蛋白质、游离氨基酸、总酚含量以及防御性酶的活性变化,探讨苹果生理指标与抗蚜性的关系。结果表明,被害后可溶性糖含量除红将军外均有所上升,其中红富士上升达13.7%;蛋白质含量除红富士外均有所降低;氨基酸含量均有所上升,其中红将军变化明显,变化率达68.8%。酚类物质是一种重要的抗蚜物质,红富士、昭锦108、秦冠被害后总酚含量均升高,其中昭锦108、秦冠中总酚含量上升率约为红富士的2倍。红富士品种正常枝条内超氧化物歧化酶(Superoxide Dismutase,SOD)、多酚氧化酶(Polyphenol Oxidase,PPO)、过氧化物酶(Peroxidase,POD)以及过氧化氢酶(Catalase,CAT)活性均显著低于昭锦108,被害后各苹果枝条SOD活性均出现上升趋势,除红将军的PPO、POD活性降低外,其他品种均升高;金帅、红富士的CAT活性上升明显,分别为110.8%、45.5%。植物的防御性酶与其抗虫性有密切关系,苹果春梢生长期对苹果绵蚜的抗性与苹果体内的可溶性糖、游离氨基酸、SOD、PPO、POD以及CAT活性均有关,而且不同苹果品种被害后生理指标的变化也与其抗蚜性有一定关系。  相似文献   

16.
As phytoplasmas are non cultivable micro-organisms, the research on phytoplasmal diseases can only be achieved with infected hosts. Biological indexing (by grafting) is the simplest detection method for phytoplasmal diseases. We tested four different grafting techniques for inoculation of apple trees or periwinkles in greenhouse, including whip graft, bark graft, budding and chip-budding. All techniques were tested on apple trees (six trees per phytoplasma isolates) in insect-proof greenhouse. The whip and bark grafting were not feasible for periwinkle plants, because of fineness and fragility of their tissues: only the chip-budding was performed (four plants per isolate). In apple trees, the best and soonest positive results were obtained by chip and bark grafting. Except for seven transplants not-grown after grafting, 100% efficiency of inoculation was obtained by both methods. Nevertheless, the transmission of phytoplasma from transplant not-grown to rootstock was sometimes recorded (28.6%). The earliest phytoplasma symptoms after whip or bark grafting appeared after 3 months. Symptoms were obtained much later with budding and chip-budding. In case of periwinkles, infected apple and periwinkle materials were used as inoculum sources. Transmission of phytoplasma from periwinkle to periwinkle was successfully carried out by chip-budding grafting. The symptoms were observed during the second month after inoculation. The transmission of phytoplasma from infected apple material to periwinkle (by chip-budding) was achieved for 60 % of the tested samples. Moreover, the latency period before symptom observation was longer. Finally, we perceived the apple trees are more convenient and rapid than periwinkle plants for biological indexing of apple materials.  相似文献   

17.
All commercially important apple cultivars are susceptible in the field to scab caused by Venturia inaequalis. The scope of this study was to investigate variation in virulence in Venturia inaequalis populations towards commercial apple cultivars. For this purpose, primary lesions were sampled in orchards with different varietal compositions and diversities. The virulence pattern of monosporic isolates, obtained by isolation of single conidia, was assessed by cross inoculations of the cv. Ananas Reinette, Boskoop, Glockenapfel, Golden Delicious, Gravenstein, James Grieve, Jonathan, Maigold, Reinette de Champagne, Spartan and Yellow Transparent. All cultivars were susceptible to some isolates and resistant to others. No cultivar behaved the same way, which suggests the presence of differential resistance in each cultivar and corresponding virulence in some isolates. Isolates from a monoculture of Golden Delicious consisted mainly of a pathotype that was virulent to Golden Delicious but not to other cultivars. In the samples from cultivar mixtures, virulence pattern variation was considerable. The results give further evidence of the existence of a large pool of differential and ephemeral resistances in Malus, which were overcome by the local scab populations during co‐evolution.  相似文献   

18.
Phytoplasmas are phloem-restricted plant pathogens transmitted by leafhoppers, planthoppers, and psyllids (Hemiptera). Most known phytoplasma vectors belong to the Cicadellidae, but many are still unknown. Within this family, Empoasca spp. (Typhlocybinae) have tested positive for the presence of some phytoplasmas, and phytoplasma transmission has been proven for one species. The aim of this work was to investigate the ability of Empoasca decipiens Paoli in transmitting chrysanthemum yellows phytoplasma (CYP, "Candidatus Phytoplasma asteris", 16SrI-B) and Flavescence dorée phytoplasma (FDP, 16SrV-C) to Chrysanthemum carinatum Schousboe (tricolor daisy) and Viciafaba (L.) (broad bean). Euscelidius variegatus Kirschbaum, a known vector of CYP and FDP, was caged together with Em. decipiens on the same source plants as a positive control of acquisition. Em. decipiens acquired CYP from daisies, but not from broad beans, and inoculated the pathogen to daisies with alow efficiency, but not to broad beans. Em. decipiens did not acquire FDP from the broad bean source. Consistent with the low transmission rate, CYP was found in the salivary glands of very few phytoplasma-infected Em. decipiens, indicating these organs represent a barrier to phytoplasma colonization. In the same experiments, the vector Eu. variegatus efficiently acquired both phytoplasmas, and consistently CYP was detected in the salivary glands of most samples of this species. The identity of the CYP strain in leafhoppers and plants was confirmed by polymerase chain reaction (PCR)-restriction fragment length polymorphism. The CYP titer in Em. decipiens was monitored over time by real-time PCR. The damage caused by Em. decipiens feeding punctures was depicted. Differences in feeding behavior on different plant species may explain the different phytoplasma transmission capability. Em. decipiens proved to be an experimental vector of CYP.  相似文献   

19.
In order to improve perimeter trapping for apple maggot fly behavioral control, we designed a set of experiments which aimed to reach a better understanding of the nature of the interaction between the natural host odor released by susceptible and low‐susceptibility apple cultivars, and an artificial host odor currently employed as a lure along with visual traps for apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), perimeter trapping programs. The response of apple maggot flies to lured and unlured visual traps deployed in different rectangular arrays of susceptible and low‐susceptibility apple cultivars (two central trees of a particular cultivar surrounded by four perimeter trees of the same or a different cultivar) was evaluated over 2 years under field conditions. In uniform blocks of susceptible (Tidemann Red, Jersey Mac) or low‐susceptibility (Marshall McIntosh) cultivars, lured traps recovered a significantly greater proportion of the total capture than unlured traps, irrespective of lure position (center or perimeter trees). Unlured traps on central susceptible apple cultivars (Red Astrachan, Gala, Fuji) recovered a significantly greater proportion of the total capture than unlured traps on surrounding low‐susceptibility cultivars (Marshall McIntosh, Paula Red, Red Delicious, and Golden Delicious). Placing the lures near traps on low‐susceptibility cultivar trees surrounding unlured traps on central susceptible cultivar trees reduced apple maggot fly visits to traps on central trees, but the latter still recovered a similar proportion of the total capture as lured traps on perimeter trees. By contrast, placing the lures near traps on central susceptible cultivar trees surrounded by unlured traps on low‐susceptibility cultivar trees allowed lured central traps to receive a significantly greater proportion of the total capture than unlured perimeter traps. We conclude that the synthetic and natural host odor of susceptible cultivars interact additively in attracting apple maggot flies to visual traps, and that, when given the choice, traps and lures should be deployed on preferred rather than on less preferred cultivar trees. Implications for trap deployment strategies for tephritid monitoring and control are discussed in the light of our findings.  相似文献   

20.
Four of five apple cultivars (Golden Delicious, Red Delicious, McIntosh, Macoun, and Melrose) inoculated with Escherichia coli O157:H7 promoted growth of the bacterium in bruised tissue independent of the date of harvest (i.e., degree of apple ripening) or the source of the apple (i.e., tree-picked or dropped fruit). Apple harvest for this study began 4 September 1998 and ended 9 October, with weekly sampling. Throughout this study, freshly picked (<2 days after harvest) McIntosh apples usually prevented the growth of E. coli O157:H7 for 2 days. Growth of E. coli O157:H7 did occur following 6 days of incubation in bruised McIntosh apple tissue. However, the maximum total cell number was approximately 80-fold less than the maximum total cell number recovered from Red Delicious apples. When fruit was stored for 1 month at 4°C prior to inoculation with E. coli O157:H7, all five cultivars supported growth of the bacterium. For each apple cultivar, the pH of bruised tissue was significantly higher and °Brix was significantly lower than the pH and °Brix of undamaged tissue regardless of the source. In freshly picked apples, changes in the pH did not occur over the harvest season. Bruised Golden Delicious, McIntosh, and Melrose apple tissue pHs were not significantly different (tree-picked or dropped), and the °Brix values of McIntosh, Macoun, and Melrose apple tissue were not significantly different. Single-cultivar preparations of cider did not support growth of E. coli, and the cell concentration of inoculated cider declined over an 11-day test period. The rate of decline in E. coli cell concentration in the McIntosh cider was greater than those in the other ciders tested. The findings of this study suggested that the presence of some factor besides, or in addition to, pH inhibited E. coli growth in McIntosh apples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号