首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Heterochromatin protein 1 (HP1) is closely associated with diverse chromatin organization and function in mitosis. However, we almost know nothing about HP1 in mammalian oocyte. Here, we investigated the subcellular distribution of HP1α and its spatial relationship to histone modifications during mouse oocyte maturation. Dynamic migration of HP1α was observed in germinal vesicle with non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) oocytes, which may be essential for the transition of chromatin conformation during the development of antral oocytes. In meiosis, HP1α was clearly detectable at the periphery of chromosomes from pre-metaphase I stage to anaphase-telophase I stage. Spatial correlation between HP1α and histone modifications is highly variable around the time of meiotic resumption. In germinal vesicle oocytes, HP1α almost colocalized with all histone modifications examined in this study except for phosphorylation of serine 28 on histone H3. However, with the breakdown of germinal vesicle, HP1α was detected mostly in the chromosomal domains with strong phosphorylation of serine 10 and 28 on histone H3, and they also partially associated with methylated histones. These results presented the functional implication of histone modifications in the regulation of HP1α during oocyte maturation. In addition, we also showed that blocking the function of HP1α by microinjecting anti-HP1α antibody caused the delay of GVBD, however, this effect may not be achieved through modifying histones.  相似文献   

2.
Maintenance and timely termination of cohesion on chromosomes ensures accurate chromosome segregation to guard against aneuploidy in mammalian oocytes and subsequent chromosomally abnormal pregnancies. Sororin, a cohesion stabilizer whose relevance in antagonizing the anti-cohesive property of Wings-apart like protein (Wapl), has been characterized in mitosis; however, the role of Sororin remains unclear during mammalian oocyte meiosis. Here, we show that Sororin is required for DNA damage repair and cohesion maintenance on chromosomes, and consequently, for mouse oocyte meiotic program. Sororin is constantly expressed throughout meiosis and accumulates on chromatins at germinal vesicle (GV) stage/G2 phase. It localizes onto centromeres from germinal vesicle breakdown (GVBD) to metaphase II stage. Inactivation of Sororin compromises the GVBD and first polar body extrusion (PBE). Furthermore, Sororin inactivation induces DNA damage indicated by positive γH2AX foci in GV oocytes and precocious chromatin segregation in MII oocytes. Finally, our data indicate that PlK1 and MPF dissociate Sororin from chromosome arms without affecting its centromeric localization. Our results define Sororin as a determinant during mouse oocyte meiotic maturation by favoring DNA damage repair and chromosome separation, and thereby, maintaining the genome stability and generating haploid gametes.  相似文献   

3.
The Src family kinase (SFK) is important in normal cell cycle control. However, its role in meiotic maturation in mammalian has not been examined. We used confocal microscope immunofluorescence to examine the in vitro dynamics of the subcellular distribution of SFK during the mouse oocyte meiotic maturation and further evaluated the functions of SFK via biochemical analysis using a specific SFK pharmacological inhibitor, PP(2). Our results showed that nonphospho-SFK was absent in oocyte upon its release from follicle. Nonphospho-SFK appeared in cytoplasm 0.5 hr after the release of oocyte and translocated to germinal vesicle (GV) before germinal vesicle breakdown (GVBD). After GVBD, nonphospho-SFK colocated with condensed chromosomes. In occyte at metaphase I (MI) and telophase I, nonphospho-SFK accumulated in the cortex and the cleavage furrow respectively besides its existence in cytoplasm in both stages. In oocyte at metaphase II (MII), nonphospho-SFK concentrated at the aligned chromosomes. In contrast, phospho-SFK was absent in oocyte until 1 hr after its release from the follicle. Phospho-SFK accumulated in the GV, the cortex, and cytoplasm immediately prior to GVBD. After GVBD, phospho-SFK evenly distributed in oocyte. In oocyte at MII, phospho-SFK localized throughout the cytoplasm and under the egg member. When the SFK activity was inhibited, the oocyte failed to initiate GVBD, could not go into MII, and could not extrude the first polar body. Our results demonstrated that SFK is required for meiotic maturation in mouse oocyte.  相似文献   

4.
NEK5, a member of never in mitosis‐gene A‐related protein kinase, is involved in the regulation of centrosome integrity and centrosome cohesion at mitosis in somatic cells. In this study, we investigated the expression and function of NEK5 during mouse oocyte maturation and preimplantation embryonic development. The results showed that NEK5 was expressed from germinal vesicle (GV) to metaphase II (MII) stages during oocyte maturation with the highest level of expression at the GV stage. It was shown that NEK5 localized in the cytoplasm of oocytes at GV stage, concentrated around chromosomes at germinal vesicle breakdown (GVBD) stage, and localized to the entire spindle at prometaphase I, MI and MII stages. The small interfering RNA‐mediated depletion of Nek5 significantly increased the phosphorylation level of cyclin‐dependent kinase 1 in oocytes, resulting in a decrease of maturation‐promoting factor activity, and severely impaired GVBD. The failure of meiotic resumption caused by Nek5 depletion could be rescued by the depletion of Wee1B. We found that Nek5 depletion did not affect CDC25B translocation into the GV. We also found that NEK5 was expressed from 1‐cell to blastocyst stages with the highest expression at the blastocyst stage, and Nek5 depletion severely impaired preimplantation embryonic development. This study demonstrated for the first time that NEK5 plays important roles during meiotic G2/M transition and preimplantation embryonic development.  相似文献   

5.
The p34(cdc2) kinase has been identified as a protein factor that is a regulator of meiotic maturation in mammalian oocytes. To investigate the regulatory function of the meiotic resumption in bovine oocytes cultured in vitro, the changes in the phosphorylation states of p34(cdc2) kinase and the histone H1 kinase activity were examined around germinal vesicle breakdown (GVBD). All bovine oocytes just after isolation from their follicles were arrested at the germinal vesicle (GV) stage, and these extracts exhibited two (upper and lower) bands of p34(cdc2) kinase on SDS-PAGE followed by immunoblotting with an antibody against C-terminal peptide of p34(cdc2). When these oocytes were cultured for 24 h in a medium supplemented with 100 microg/ml genistein, tyrosine phosphorylation inhibitor, GVBD was induced in 85% of oocytes, indicating that the upper band of p34(cdc2) kinase in bovine oocytes at the GV stage was already fully phosphorylated tyrosine residue prior to culture. Another (middle) band of p34(cdc2) kinase between the upper and lower bands appeared in the extracts of the oocytes cultured for 4 h, and significant activation of the histone H1 kinase was found in these oocytes (67 +/- 18 fmol/h/oocyte) as compared to that in oocytes cultured for 0 h (46 +/- 11 fmol/h/oocyte). The staining intensity of the middle band and the activity of the histone H1 kinase were further increased after the initiation of GVBD at 6 h of culture, but the quantitative changes of upper and lower bands were not detected throughout the 12 h of culture. Thus, it is concluded that the dephosphorylation of p34(cdc2) kinase followed by activation of the histone H1 kinase after the onset of culture plays a key role in the resumption of meiosis in bovine oocytes.  相似文献   

6.
Epigenetic regulation of pericentromeric heterochromatin is crucial for proper interactions between kinetochores and spindle microtubules governing accurate chromosome segregation. Here, we first examined the dynamic distribution of phosphorylated serine 10 and 28 on H3 during mouse oocyte maturation and early embryo development using immunofluorescent staining and confocal microscopy. Our results revealed strong signals of phosphorylated H3/ser10 and 28 in the pericentromeric heterochromatin area and continuous persistent staining of the chromosome periphery, respectively. A panel of specific antibodies against various acetylated lysine, dimethylated lysine or phosphorylated serine residues on histone H3 or H4 were used to investigate the effects of Trichostatin A (TSA), a general inhibitor of histone deacetylases (HDACs), on histone modifications of pericentromeric heterochromatin. Unexpectedly, TSA treatment was unable to alter the acetylation and methylation status of pericentromeric heterochromatin, however, it resulted in significant dephosphorylation of H3/ser10 at this site during mouse oocyte meiosis, which is likely to play a role in the TSA-induced defective chromosome segregation. Furthermore, by using ZM447439, an inhibitor of Aurora kinases, we revealed that Aurora kinases may participate in the regulation of histone phosphorylation during mouse oocyte maturation.  相似文献   

7.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.  相似文献   

8.
The control of microtubule and actin-mediated events that direct the physical arrangement and separation of chromosomes during meiosis is critical since failure to maintain chromosome organization can lead to germ cell aneuploidy. Our previous studies demonstrated a role for FYN tyrosine kinase in chromosome and spindle organization and in cortical polarity of the mature mammalian oocyte. In addition to Fyn, mammalian oocytes express the protein tyrosine kinase Fer at high levels relative to other tissues. The objective of the present study was to determine the function of this kinase in the oocyte. Feline encephalitis virus (FES)-related kinase (FER) protein was uniformly distributed in the ooplasm of small oocytes, but became concentrated in the germinal vesicle (GV) during oocyte growth. After germinal vesicle breakdown (GVBD), FER associated with the metaphase-I (MI) and metaphase-II (MII) spindles. Suppression of Fer expression by siRNA knockdown in GV stage oocytes did not prevent activation of cyclin dependent kinase 1 activity or chromosome condensation during in vitro maturation, but did arrest oocytes prior to GVBD or during MI. The resultant phenotype displayed condensed chromosomes trapped in the GV, or condensed chromosomes poorly arranged in a metaphase plate but with an underdeveloped spindle microtubule structure or chromosomes compacted into a tight sphere. The results demonstrate that FER kinase plays a critical role in oocyte meiotic spindle microtubule dynamics and may have an additional function in GVBD.  相似文献   

9.
Protein kinase C (PKC) is a family of Ser/Thr protein kinases that can be activated by Ca2+, phospholipid and diacylglycerol. There is evidence that PKC plays key roles in the meiotic maturation and activation of mammalian oocytes. The present study aimed to monitor the effect of age, germinal vesicle (GV) transfer and modified nucleoplasmic ratio on the subcellular distribution profile of PKCα, an important isozyme of PKC, in mouse oocytes undergoing meiotic maturation and following egg activation. Germinal vesicle oocytes were collected from 6-8-week-old and 12-month-old mice. Germinal vesicle-reconstructed oocytes and GV oocytes with one-half or one-third of the original oocyte volume were created using micromanipulation and electrofusion. The subcellular localization of PKCα was detected by immunocytochemistry and laser confocal microscopy. Our study showed that PKCα had a similar location pattern in oocytes and early embryos from young and old mice. PKCα was localized evenly in ooplasm, with weak staining in GV at the GV stage, and present in the entire meiosis II (MII) spindle at the MII stage. In pronuclear and 2-cell embryos, PKCα was concentrated in the nucleus except for the nucleolus. After the GV oocytes were reconstructed, the resultant MII oocytes and embryos showed a similar distribution of PKCα between reconstructed and unreconstructed controls. After one-half or two-thirds of the cytoplasm was removed from the GV oocytes, PKCα still had a similar location pattern in MII oocytes and early embryos from the GV oocytes with modified nucleoplasmic ratio. Our study showed that age, GV transfer and modified nucleocytoplasmic ratio does not affect distribution of PKCα during mouse oocyte maturation, activation, and early embryonic mitosis.  相似文献   

10.
In contrast to the majority of mammals, canine oocytes are ovulated at immature germinal vesicle (GV) stage and complete meiotic maturation to metaphase II during 48-72 hr within the oviducts. This study aims to characterize meiotic maturation process in bitch oocytes, with both morphological and biochemical approaches. The follow-up of chromatin and microtubules during maturation was described, and MPF and MAP kinase activities were quantified at different stages of maturation. Since bitch oocyte cytoplasm is darkly pigmented, the first step was to setup an appropriate staining method for DNA. We thus compared the efficiency of two visualization techniques and demonstrated that propidium iodide coupled to confocal microscopy was a better method than Hoechst/fluorescence microscopy for nuclear stage observation (determination rates: 98.6 vs. 69.5%, respectively; P < 0.01, n = 1622 oocytes). Microtubule organization, evaluated by tubulin immunodetection, revealed subcortical and perinuclear alpha-tubulin and asters in GV oocytes and a clear network of microtubules in GVBD oocytes. In MI and MII oocytes, a symmetrical, barrel-shaped, and radially located spindle was observed. MPF and MAP kinase activities were assayed concomitantly using histone H1 and MBP as substrates. Kinase activities were detected at low levels in oocytes at GV and GVBD stages and were significantly higher at MI and MII stages. In conclusion, despite the particular pattern of meiotic resumption in canine oocytes (ovulated at GV stage), cytoskeleton/chromatin organization and kinase activities follow a similar pattern to those observed in other mammalian species.  相似文献   

11.
The nature, intracellular distribution, and role of proteins synthesized during meiotic maturation of mouse oocytes in vitro have been examined. Proteins synthesized during the initial stages of maturation are concentrated within the nucleus (germinal vesicle) and become intimately associated with the condensing chromosomes. Inhibition of protein synthesis during this period does not prevent germinal vesicle dissolution or chromosome condensation, but meiotic progression is blocked reversibly at the circular bivalent stage. A protein is synthesized during meiotic maturation of the mouse oocyte which exhibits several of the characteristics of the very lysine-rich histone, FI; this and other histones are phosphorylated during the initial stages of maturation. These results are discussed in relation to studies of meiotic maturation of oocytes from non-mammalian species and chromosome condensation in both oocytes and mitotic cells.  相似文献   

12.
A series of experiments were designed to evaluate the meiotic competence of mouse oocyte germinal vesicle (GV) in rabbit ooplasm. In experiment 1, an isolated mouse GV was transferred into rabbit GV-stage cytoplast by electrofusion. It was shown that 71.8% and 63.3% of the reconstructed oocytes completed the first meiosis as indicated by the first polar body (PB1) emission when cultured in M199 and M199 + PMSG, respectively. Chromosomal analysis showed that 75% of matured oocytes contained the normal 20 mouse chromosomes. When mouse spermatozoa were microinjected into the cytoplasm of oocytes matured in M199 + PMSG and M199, as many as 59.4% and 48% finished the second meiosis as revealed by the second polar body (PB2) emission and a few fertilized eggs developed to the eight-cell stage. In experiment 2, a mouse GV was transferred into rabbit MII-stage cytoplast. Only 13.0-14.3% of the reconstructed oocytes underwent germinal vesicle breakdown (GVBD) and none proceeded past the MI stage. When two mouse GVs were transferred into an enucleated rabbit oocyte, only 8.7% went through GVBD. In experiment 3, a whole zona-free mouse GV oocyte was fused with a rabbit MII cytoplast. The GVBD rates were increased to 51.2% and 49.4% when cultured in M199 + PMSG and M199, respectively, but none reached the MII stage. In experiment 4, a mouse GV was transferred into a partial cytoplasm-removed rabbit MII oocyte in which the second meiotic apparatus was still present. GVBD occurred in nearly all the reconstructed oocytes when one or two GVs were transferred and two or three metaphase plates were observed in ooplasm after culturing in M199 + PMSG for 8 hr. These data suggest that cytoplasmic factors regulating the progression of the first and the second meioses are not species-specific in mammalian oocytes and that these factors are located in the meiotic apparatus and/or its surrounding cytoplasm at MII stage.  相似文献   

13.
Yang CR  Wei Y  Qi ST  Chen L  Zhang QH  Ma JY  Luo YB  Wang YP  Hou Y  Schatten H  Liu ZH  Sun QY 《PloS one》2012,7(6):e38807
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.  相似文献   

14.
The mammalian oocyte undergoes dynamic changes in chromatin structure to reach complete maturation. However, little known is about behaviors of ATP‐dependent chromatin remodeling factors (ACRFs) during meiosis. Here, we found that respective ACRFs may differently behave in the process of oocyte maturation in the bovine. All ACRFs interacted with oocytic chromatin at the germinal vesicle (GV) stage. Mi‐2 and hSNF2H disappeared from GV‐chromatin within 1 hr of in vitro culture whereas Brg‐1 and BAF‐170 were retained throughout germinal vesicle break down (GVBD). Brg‐1 was localized on the condensed chromatin outside, whereas BAF‐170 was entirely excluded from condensed chromatin. Thereafter, Brg‐1 and BAF‐170 interacted with metaphase I and metaphase II chromosomes. These results imply that Mi‐2 and hSNF2H may initiate the meiotic resumption, and Brg‐1 and BAF‐170 may support chromatin condensation during meiosis. In addition, DNA methylation and methylation of histone H3 at lysine 9 (H3K9) seem to be constantly retained in the oocyte chromatin throughout in vitro maturation. Inhibition of ACRF activity by treatment with the inhibitor apyrase led to retarded chromatin remodeling in bovine oocytes, thereby resulting in poor development of fertilized embryos. Therefore, these results indicate that precise behaviors of ACRFs during meiosis are critical for nuclear maturation and subsequent embryonic development in the bovine. Mol. Reprod. Dev. 77: 126–135, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Histone acetylation is associated with a diversity of chromatin-related processes in mitosis. However, its roles in mammalian oocyte meiosis are largely unknown. In the present study, we first investigated in detail the acetylation changes during porcine oocyte maturation using a panel of antibodies specific for the critical acetylated forms of histone H3 and H4, and showed meiosis stage-dependent and lysine residue-specific patterns of histone acetylation. By using trichostatin A (TSA), a general inhibitor of histone deacetylases (HDACs), we further determined that selective inhibition of histone deacetylation (thereby maintaining hyperacetylation) delayed the onset of germinal vesicle breakdown and produced a high frequency of lagging chromosomes or chromatin bridges at anaphase and telophase I (AT-I), suggesting that histone deacetylation is required for orderly meiotic resumption and accurate chromosome segregation in porcine oocytes. In addition, we examined the localization and expression of HDAC1 by performing immunofluorescence and immunoblotting analysis. The results showed that subcellular translocation, expression level and phosphorylated modification of HDAC1 were temporally regulated and likely to co-participate in the establishment of histone acetylation profiles in oocyte meiosis.  相似文献   

16.
The ability of mammalian oocytes to resume meiosis and to complete the first meiotic division is acquired sequentially during their growth phase. The acquisition of meiotic competence in goat oocytes has been previously correlated with follicular size (9). Since protein phosphorylation/dephosphorylation play a key role in oocyte maturation, it could be that in meiotically incompetent oocytes, such post-translational modifications are inadequate. The aim of this study was to analyze whether changes in oocyte proteins phosphorylation occurred during the acquisition of meiotic competence. For this propose, goat oocytes were divided into 4 classes according to follicular size and meiotic competence: Class A oocytes from follicles < 0.5 mm in diameter: Class B oocytes from follicles 0.5-0.8 mm; Class C oocytes from follicles 1-1.8 mm and class D oocytes from follicles > 3 mm. The protein phosphorylation patterns of these classes of oocytes were studied at different times of in vitro maturation. After 4h of culture, when all oocytes were in the germinal vesicle stage, only the oocytes from Class D displayed the phosphoproteins at 110 kD, 31 kD and around 63 kD. In contrast to Class D oocytes Classes B and C oocytes were partially competent to mature, they underwent germinal vesicle breakdown later than fully competent Class D oocytes and remained in early prometaphase I or in metaphase I, respectively. They exhibited the phosphoprotein changes that are associated with commitment to resume meiosis; but the changes occurred later than in Class D oocytes, which were fully competent to reach metaphase II. After 27 h of culture, the phosphorylation patterns of Class B, C and D oocytes were identical, whereas the meiotic stages reached were quite different. The phosphoprotein changes associated with oocyte maturation did not occur in meiotically incompetent Class A oocytes, which were blocked at the germinal vesicle stage. From these results it can be concluded that, at the GV stage, meiotically incompetent and competent goat oocytes display different patterns of protein phosphorylation. Once oocytes are able to resume meiosis they undergo specific phosphorylation changes, but whether these changes are markers or regulators of maturation events remains to be determined.  相似文献   

17.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

18.
Cdc25C is a dual specificity phosphatase essential for dephosphorylation and activation of cyclin-dependent kinase 1 (cdk1), a prerequisite step for mitosis in all eucaryotes. Cdc25C activation requires phosphorylation on at least six sites including serine 214 (S214) which is essential for metaphase/anaphase transit. Here, we have investigated S214 phosphorylation during human meiosis with the objectives of determining if this mitotic phosphatase cdc25C participates in final meiotic divisions in human oocytes. One hundred forty-eight human oocytes from controlled ovarian stimulation protocols were stained for immunofluorescence: 33 germinal vesicle (GV), 37 metaphase stage I (MI), and 78 unfertilized metaphase stage II (MII). Results were stage dependent, identical, independent of infertility type, or stimulation protocol. During GV stages, phospho-cdc25C is localized at the oocyte periphery. During early meiosis I (MI), phosphorylated cdc25C is no longer detected until onset of meiosis I. Here, phospho-cdc25C localizes on interstitial microtubules and at the cell periphery corresponding to the point of polar body expulsion. As the first polar body reaches the periphery, phosphorylated cdc25C is localized at the junction corresponding to the mid body position. On polar body expulsion, the interior signal for phospho-cdc25C is lost, but remains clearly visible in the extruded polar body. In atresic or damaged oocytes, the polar body no longer stains for phospho-cdc25C. Human cdc25C is both present and phosphorylated during meiosis I and localizes in a fashion similar to that seen during human mitotic divisions implying that the involvement of cdc25C is conserved and functional in meiotic cells.  相似文献   

19.
Li CJ  Fan BQ 《Theriogenology》1997,48(1):33-41
Mitochondrial reorganization during meiotic maturation and parthenogenetic activation was studied in mouse oocytes using a laser scanning confocal microscope and a transmission electron microscope. Mitochondria were mainly distributed perinuclearly in the germinal vesicle (GV) stage oocytes and were dispersed throughout ooplasm after germinal vesicle breakdown (GVBD), except for a slightly higher occurrence in one hemisphere of oocytes, from which the first polar body (PbI) would become extruded. Mitochondria reaggregated around the metaphae II (MII) spindle and pronuclear region after alcohol activatation at the MII stage. The mitochondrial distribution may correspond to the Ca(2+) changes during meiotic maturation and parthenogenetic activation.  相似文献   

20.
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes.

Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号