首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-type natriuretic peptide (CNP) acts as a paracrine hormone to dilate blood vessels and is also required for the growth of long bones. In vivo, CNP is produced by cleavage from the C-terminal end of a larger proCNP peptide. The remaining N-terminal proCNP fragment (NT-proCNP) escapes into the circulation where its concentration is much higher than that of CNP due presumably to a lower clearance rate. Our strategy to obtain large quantities of pure NT-proCNP for further physiological investigations was to express it as a fusion protein with His(6)-tagged thioredoxin followed by cleavage using enterokinase to yield NT-proCNP alone. We have successfully designed and artificially synthesized the coding sequence specifying both mouse and human NT-proCNP with built-in codon bias towards Escherichia coli codon preference. An enterokinase recognition sequence was incorporated immediately upstream of the NT-proCNP coding sequence to allow the fusion protein to be cleaved without leaving any extra residues on the NT-proCNP peptide. High levels of fusion proteins were obtained, constituting 50-58% of total bacterial proteins. Greater than 90% of recombinant thioredoxin/NT-proCNP was expressed in the soluble form and purified to near homogeneity in a single chromatographic step using nickel as the metal ion in IMAC. A time course analysis of the products released from enterokinase cleavage of the recombinant proteins by ESI-MS revealed three sensitive secondary cleavage sites: two were located on vector-associated sequences linking the thioredoxin moiety and NT-proCNP, and one at the C-terminal end of NT-proCNP. Clearly, substrate specificity of both the native and recombinant forms of enterokinase for the recognition sequence DDDDK was by no means exclusive. Hydrolysis at the unexpected LKGDR site located towards the carboxyl end on NT-proCNP was significantly more efficient than at the internally sited DDDDK target sequence. However, when this same sequence was sited internally replacing the DDDDK in another construct of thioredoxin/mouse NT-proCNP, it was found to be poorly processed by enterokinase. Our results showed that non-target sequences can be preferentially recognized over the canonical DDDDK sequence when located accessibly at the ends of proteins.  相似文献   

2.
Summary The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.  相似文献   

3.
Barry DG  Daly NL  Clark RJ  Sando L  Craik DJ 《Biochemistry》2003,42(22):6688-6695
Cyclotides are a recently discovered family of disulfide rich proteins from plants that contain a circular protein backbone. They are exceptionally stable, as exemplified by their use in native medicine of the prototypic cyclotide kalata B1. The peptide retains uterotonic activity after the plant from which it is derived is boiled to make a medicinal tea. The circular backbone is thought to be in part responsible for the stability of the cyclotides, and to investigate its role in determining structure and biological activity, an acyclic derivative, des-(24-28)-kalata B1, was chemically synthesized and purified. This derivative has five residues removed from the 29-amino acid circular backbone of kalata B1 in a loop region corresponding to a processing site in the biosynthetic precursor protein. Two-dimensional NMR spectra of the peptide were recorded, assigned, and used to identify a series of distance, angle, and hydrogen bonding restraints. These were in turn used to determine a representative family of solution structures. Of particular interest was a determination of the structural similarities and differences between des-(24-28)-kalata B1 and native kalata B1. Although the overall three-dimensional fold remains very similar to that of the native circular protein, removal of residues 24-28 of kalata B1 causes disruption of some structural features that are important to the overall stability. Furthermore, loss of hemolytic activity is associated with backbone truncation and linearization.  相似文献   

4.
In this study we have demonstrated the interactions of kalata B1 and its naturally occurring analogue kalata B6 with five model lipid membranes and have analyzed the binding kinetics using surface plasmon resonance. Two kalata peptides showed a higher affinity for the phosphatidylethanolamine-containing membranes, indicating that the peptides would bind selectively to bacterial membranes. Also we have optimized the procedure for the immobilization of five liposome mixtures and have shown that the procedure provides reproducible levels of immobilized liposomes and could be used to screen the selective binding of putative antimicrobial peptides to model mammalian or microbial phospholipid membranes.  相似文献   

5.
Antimicrobial peptide LL-37 plays an important role in human body's first line of defense against infection. To better understand the mechanism of action, it is critical to elucidate the three-dimensional structure of LL-37 in complex with bacterial membranes. We present a bacterial expression system that allows the incorporation of (15)N and other isotopes into the polypeptide for nuclear magnetic resonance (NMR) analysis. The DNA sequence encoding full-length LL-37 was chemically synthesized and cloned into the pET-32a(+) vector for protein expression in Escherichia coli strain BL21(DE3). The peptide was expressed directly as a His-tagged fusion protein without the inclusion of its precursor sequence. LL-37 was released from the fusion by formic acid cleavage at the AspPro dipeptide bond and separated from the carrier thioredoxin by affinity chromatography and reverse-phase HPLC. The peptide was identified by polyacrylamide gel electrophoresis and further confirmed by mass spectrometry and NMR spectroscopy. Antibacterial activity assays showed that the recombinant LL-37 purified from the bacterial source is as active as that from chemical synthesis. According to the antimicrobial peptide database (), 111 peptides contain a Met residue, but only 5 contain the AspPro pair, indicating a broader application of formic acid than cyanogen bromide in cleaving fusion proteins. The successful application to the expression of the 66-residue cytoplasmic tail of human MUC1 indicates that the system can be applied to other peptides as well.  相似文献   

6.
Enterokinase (EC 3.4.21.9) is a serine proteinase in the duodenum that exhibits specificity for the sequence (Asp)(4)-Lys. It converts trypsinogen to trypsin. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for in vitro cleavage of fusion proteins. cDNA encoding the catalytic chain of Chinese bovine enterokinase was cloned and its encoding amino acid sequence is identical to the previously reported sequence although there are two one-base mutations which do not change the encoded amino acid. The EK catalytic subunit cDNA was cloned into plasmid pET32a, and fused downstream to the fusion partner thioredoxin (Trx) and the following DDDDK enterokinase recognition sequence. The recombinant bovine enterokinase catalytic subunit was expressed in Escherichia coli BL21(DE3), and most products existed in soluble form. After an in vivo autocatalytic cleavage of the recombinant Trx-EK catalytic domain fusion protein, intact, biologically active EK catalytic subunit was released from the fusion protein. The recombinant intact EK catalytic subunit was purified to homogeneity with a specific activity of 720 AUs/mg protein through ammonium sulfate precipitation, DEAE chromatography, and gel filtration. The purified intact EK catalytic subunit has a K(m) of 0.17 mM, and K(cat) is 20.8s(-1). From 100 ml flask culture, 4.3 mg pure active EK catalytic subunits were obtained.  相似文献   

7.
肠激酶(Enteroloinase,EK,EC3.4.21.9)是一种以异源二聚体形式存在于哺乳动物十二指肠内的丝氨酸蛋白酶,通过在位点(Asp)4-Lys的羧基端进行高效特异酶切,将胰蛋白酶原激活为胰蛋白酶。以GenBank公共数据库中牛肠激酶轻链基因序列(Accession No.NM174439)设计引物,利用RT-PCR方法合成牛肠激酶轻链基因片段,并克隆进pET39b载体中DsbA片段的C’端,转化大肠杆菌BL21(DE3),获得DsbA/牛肠激酶轻链融合蛋白,经镍离子螯合层析纯化,每升培养液中可得到2.7-3.0mg重组牛肠激酶,对含有肠激酶酶切位点的IL-11/MBP融合蛋白进行酶切,结果表明,酶解率可达到95%以上,为重组牛肠激酶的大规模生产打下了基础。  相似文献   

8.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

9.
近年来的研究发现 ,抗菌蛋白在生物体非专一性防御系统有着重要的作用 ,已有数十种具有抗菌活性的多肽被分离 ,这些多肽可大致分为 3类 ,即含分子内二硫桥的抗菌肽 ;具有双亲α 螺旋结构的抗菌肽 ;以及富含某种氨基酸残基的抗菌肽[1 ] ,一般来说 ,这些抗菌肽具有分子量小 ,稳定性好 ,无细胞毒性 ,抗菌谱广等特点。多种抗菌肽的一级结构和二级结构已经确定[2 ] ,但作用机理仍不明了。一般认为可能存在两种作用模式 ,即 1)通过肽 脂膜相关作用杀菌 ;2 )通过受体介导的识别过程起作用[1 ] 。CecropinB是一种较早从家蚕中分离得到 ,由 …  相似文献   

10.
Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions.  相似文献   

11.
Insect cecropins are small basic polypeptides synthesized in fat body and hemocytes in response to bacterial infections or hypodermic injuries. To explore a new approach for high expression of soluble cecropin in Escherichia coli cells, we fused the sequence encoding Musca domestica mature cecropin (named Mdmcec) in-frame to thioredoxin (TRX) gene to construct an expression vector pTRX-6His-Mdmcec. An enterokinase cleavage site was introduced between the 6xHis-tag and Mdmcec to facilitate final release of the recombinant Mdmcec. The fusion protein TRX-6His-Mdmcec was purified successfully by HisTrap HP affinity column and a high yield of 48.0mg purified fusion protein was obtained from 1L culture. Recombinant Mdmcec was readily obtained by enterokinase cleavage of the fusion protein followed by HPLC chromatography, and 11.2mg pure active recombinant Mdmcec was obtained from 1L E. coli culture. The molecular mass of recombinant Mdmcec determined by electrospray ionization-mass spectrometry (ESI-MS) is identical to that of native cecropin. Analysis of recombinant Mdmcec by circular dichroism (CD) indicated that recombinant Mdmcec contained predominantly alpha-helix with some random coil. Antimicrobial activity assays demonstrated that recombinant Mdmcec had a broad spectrum of activity against fungi, Gram-positive and negative bacteria. The procedure described in this study will provide a reliable and simple method for production of different cationic peptides for biological studies.  相似文献   

12.
Colgrave ML  Craik DJ 《Biochemistry》2004,43(20):5965-5975
The cyclotides constitute a recently discovered family of plant-derived peptides that have the unusual features of a head-to-tail cyclized backbone and a cystine knot core. These features are thought to contribute to their exceptional stability, as qualitatively observed during experiments aimed at sequencing and characterizing early members of the family. However, to date there has been no quantitative study of the thermal, chemical, or enzymatic stability of the cyclotides. In this study, we demonstrate the stability of the prototypic cyclotide kalata B1 to the chaotropic agents 6 M guanidine hydrochloride (GdHCl) and 8 M urea, to temperatures approaching boiling, to acid, and following incubation with a range of proteases, conditions under which most proteins readily unfold. NMR spectroscopy was used to demonstrate the thermal stability, while fluorescence and circular dichroism were used to monitor the chemical stability. Several variants of kalata B1 were also examined, including kalata B2, which has five amino acid substitutions from B1, two acyclic permutants in which the backbone was broken but the cystine knot was retained, and a two-disulfide bond mutant. Together, these allowed determinations of the relative roles of the cystine knot and the circular backbone on the stability of the cyclotides. Addition of a denaturant to kalata B1 or an acyclic permutant did not cause unfolding, but the two-disulfide derivative was less stable, despite having a similar three-dimensional structure. It appears that the cystine knot is more important than the circular backbone in the chemical stability of the cyclotides. Furthermore, the cystine knot of the cyclotides is more stable than those in similar-sized molecules, judging by a comparison with the conotoxin PVIIA. There was no evidence for enzymatic digestion of native kalata B1 as monitored by LC-MS, but the reduced form was susceptible to proteolysis by trypsin, endoproteinase Glu-C, and thermolysin. Fluorescence spectra of kalata B1 in the presence of dithiothreitol, a reducing agent, showed a marked increase in intensity thought to be due to removal of the quenching effect on the Trp residue by the neighboring Cys5-Cys17 disulfide bond. In general, the reduced peptides were significantly more susceptible to chemical or enzymatic breakdown than the oxidized species.  相似文献   

13.
In a previous paper, we reported more efficient enterokinase cleavage at a C-terminal non-target LKGDR(201) site compared with an internally sited canonical recognition site, DDDDK(156). When this non-target site was placed internally to replace DDDDK(156) between the thioredoxin moiety and mouse NT-proCNP(1-50), this site was poorly processed leading us to conclude that efficient processing at LKGDR(201) in the first instance was due to its accessibility at the C-terminus of the fusion protein. Subsequently, we reasoned that treatment of thioredoxin-fused NT-proCNP(1-81) would allow us to retrieve full-length NT-proCNP(1-81) without undue processing at the LKGDR(201) site since this non-target site would now be located internally about 36 residues away from the C-terminus and hence not be hydrolyzed efficiently. Surprisingly, ESI-MS data showed that the LKGDR site in thioredoxin-fused human NT-proCNP(1-81) was still very efficiently cleaved and revealed a new but slow hydrolysis site with the sequence RVDTK/SRAAW to yield a peptide consistent with NT-proCNP(58-81). The evidence obtained from these experiments led us to postulate that efficient cleavage at the non-target LKGDR(201) site was not merely influenced by steric constraints but also by the sequence context downstream of the scissile bond. Hence, we constructed variants of thioredoxin-mouse NT-proCNP(1-50) where SRLLR residues (i.e. those immediately downstream from the LKGDR(201) site in NT-proCNP(1-50)) were systematically added one at a time downstream of the internal DDDDK(156) site. To evaluate the relative effects of site accessibility and downstream sequence context on the efficiency of enterokinase cleavage, we have also replaced the native LKGDR(201) sequence with DDDDK(201). Our results showed that incremental addition of SRLLR residues led to a steady increase in the rate of hydrolysis at DDDDK(156). Further variants comprising DDDDK(156)SS, DDDDK(156)SD and DDDDK(156)RR showed that the minimal critical determinants for enhanced enterokinase cleavage are serine in the P1' position followed by a serine or a basic residue, lysine or arginine, in the P2' position. Our data provided conclusive evidence that the influence of downstream sequences on recombinant light chain enterokinase activity was greater than accessibility of the target site at the terminus region of the protein. We further showed that the catalytic efficiency of the native holoenzyme was influenced primarily by residues on the N-terminal side of the scissile bond while being neutral to residues on the C-terminal side. Finally, we found that cleavage of all nine fusion proteins reflects accurate hydrolysis at the DDDDK(156) and DDDDK(201) sites when recombinant light chain enterokinase was used while non-specific processing at secondary sites were observed when these fusion proteins were treated with the native holoenzyme.  相似文献   

14.
Malaria aspartic proteases are attractive drug targets for the treatment of malaria, however, recombinant expression of active histo-aspartic proteinase (HAP) to facilitate its characterization has proven elusive. The present study reports on the first recombinant expression of soluble, active histo-aspartic proteinase from Plasmodium falciparum as a thioredoxin fusion protein. A truncated form of HAP (77p-451) was fused to thioredoxin in the pET32b(+) vector and the fusion protein (Trx-tHAP) was expressed in Escherichia coli Rosetta-gami B (DE3)pLysS. The fusion protein was partially purified from the culture medium using a combination of anion exchange and Ni(2+) affinity chromatography. Soluble tHAP was subsequently purified by enterokinase treatment and removal, followed by gel filtration chromatography. Although truncated HAP was incapable of autocatalytic activation, enterokinase digestion of partially purified fusion protein released the truncated prosegment yielding a mature form of tHAP (mtHAP). N-terminal sequencing of mtHAP indicated that enterokinase cleavage took place at Lys119-Ser120, four residues upstream of the native cleavage site (Gly123-Ser124). Initial activity tests showed that mtHAP was capable of hydrolyzing acid-denatured globin as well as cleavage of the synthetic substrate EDANS-CO-CH(2)-CH(2)-CO-ALERMFLSFP-Dap(DABCYL)-OH. Inhibition studies showed that the activity of mtHAP was completely inhibited by pepstatin A and to a lesser degree, PMSF. Using the synthetic substrate, mtHAP showed a pH optimum of 5.2, and Km=3.4 microM and kcat=1.6 x 10(-3)s(-1). The successful expression of active recombinant HAP from E. coli will accelerate the investigation of the structure-function relationships of HAP and facilitate the development of specific inhibitors with antimalarial activities.  相似文献   

15.
Cyclotides are a family of bioactive plant peptides that are characterized by a circular protein backbone and three conserved tightly packed disulfide bonds. The antimicrobial and hemolytic properties of cyclotides, along with the relative hydrophobicity of the peptides, point to the biological membrane as a target for cyclotides. To assess the membrane-induced conformation and orientation of cyclotides, the interaction of the M?bius cyclotide, kalata B1, from the African perennial plant Oldenlandia affinis, with dodecylphosphocholine micelles was studied using NMR spectroscopy. Under conditions where the cyclotide formed a well-defined complex with micelles, the spatial structure of kalata B1 was calculated from NOE and J couplings data, and the model for the peptide-micelle complex was built using 5- and 16-doxylstearate relaxation probes. The binding of divalent cations to the peptide-micelle complex was quantified by Mn2+ titration. The results show that the peptide binds to the micelle surface, with relatively high affinity, via two hydrophobic loops (loop 5, Trp19-Val21; and loop6, Leu27-Val29). The charged residues (Glu3 and Arg24), along with the cation-binding site (near Glu3) are segregated on the other side of the molecule and in contact with polar head groups of detergent. The spatial structure of kalata B1 is only slightly changed during incorporation into micelles and represents a distorted triple-stranded beta-sheet cross-linked by a cystine knot. Detailed structural analysis and comparison with other knottins revealed structural conservation of the two-disulfide motif in cyclic and acyclic peptides. The results thus obtained provide the first model for interaction of cyclotides with membranes and permit consideration of the cyclotides as membrane-active cationic antimicrobial peptides.  相似文献   

16.
Recent emergence of plant derived peptide cyclotides, characterized with a cyclized head-to-tail backbone and three disulfide bonds forming cyclic cystine knot, has advanced the field of biopharmaceutics to next level. This conserved structural feature of cyclotides holds responsible for its outstanding resistance towards thermal, chemical and enzymatic degradation. Besides, the cyclotides are preferred widely in current research to develop them as potent peptide therapeutics, where the improvement of structural stability is a demanding task in pharmaceutical firm. Hence, in this work, the structural stability of six cyclotides of kalata family (kalata B1, kalata B2, kalata B5, kalata B7, kalata B8 and kalata B12) was investigated. Among all, maximum number of intra-molecular interactions was observed only in kalata B1 (kB1). In addition, geometrical observables using conformational sampling of six kalata cyclotides also revealed that kB1 exhibited statistically significant structural stability in terms of contours of root mean square fluctuation, gyration radius, ovality and surface area (polar and non-polar). Furthermore, the distance of disulfide bridges (S–S within 2.2 Å) also confirmed that kB1 achieved maximum strength in terms of structural stability and accomplished remarkable functionality in terms of ovality as compared to other five kalata cyclotides. Accordingly, kB1 could be demonstrated as a stable template for the advancement of peptide therapeutics.  相似文献   

17.
LL-37 is a human antimicrobial peptide that has been shown to possess multiple functions in host defense. In this report, the peptide was expressed as a fusion with a thioredoxin–SUMO dual-tag. Upon SUMO protease mediated cleavage at the SUMO/peptide junction, LL-37 with its native N-terminus was generated. The released peptide was separated from the dual-tag and cleavage enzyme by size-exclusion chromatography. Mass spectrometry analysis proves that the recombinant peptide has a molecular weight as theoretically expected for its native form. The produced peptide displayed antimicrobial activity against Escherichia coli K-12. On average, 2.4 mg peptide was obtained from one liter of bacterial culture. Thus, the described approach provides an effective alternative for producing active recombinant LL-37 with its natural amino acid sequence in E. coli.  相似文献   

18.
Lysobacter enzymogenes produces an alkaline phosphatase which is secreted into the medium. The gene for the enzyme (phoA) was isolated from a recombinant lambda library. It was identified within a 4.4-kb EcoRI-BamH1 fragment, and its sequence was determined by the chain termination method. The structural gene consists of an open reading frame which encodes a 539-amino-acid protein with a 29-residue signal sequence, followed by a 119-residue propeptide, the 281-residue mature phosphatase, and a 110-residue carboxy-terminal domain. The roles of the propeptide and the carboxy-terminal peptide remain to be determined. A molecular weight of 30,000 was determined for the mature enzyme from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid sequence was compared with sequences available in the current protein data base, and a region of the sequence was found to show considerable homology with sequences in mammalian type 5 iron-containing purple acid phosphatases.  相似文献   

19.
重组牛肠激酶轻链基因在毕赤酵母中的表达与纯化   总被引:1,自引:0,他引:1  
目的:构建重组牛肠激酶轻链的基因工程菌,并进行表达和纯化,以获得高纯度和高活性的重组牛肠激酶轻链蛋白。方法:以GenBank公共数据库中的牛肠激酶轻链基因序列(AccessionNo.NM174439)设计引物,利用RT-PCR合成牛肠激酶轻链基因片段,并克隆进pPIC9K载体,同时在基因N端插进6个组氨酸标签,转化毕赤酵母GS115,进行筛选和诱导表达。产物经镍离子螯和层析和Q-SepharoseFF柱纯化,并酶切融合蛋白检测其活性。结果:培养液中重组牛肠激酶轻链蛋白表达量为3.0mg/L。对含有肠激酶酶切位点的IL-11/MBP融合蛋白进行酶切,结果表明,酶解率可达到90%以上。结论:表达并获得了高纯度的重组肠激酶轻链蛋白,为大规模生产打下了基础。  相似文献   

20.
趋化因子受体如CCR5和CXCR4是HIV侵入细胞的辅助受体,趋化因子与其受体的结合可以抑制HIV感染细胞。近年来在疱疹病毒8(Human herpesvirus8,HHV8)基因组中发现与人趋化因子有较高同源性的开放阅读框,分别命名为vMIP1、vMIP2和vMIP3。研究发现vMIP2与多种人趋化因子受体有高亲和力。本研究在大肠杆菌中表达出融合蛋白TrxA—vMIP2,用亲和层析的方法对其纯化。纯化产物用肠激酶酶切后,经离子交换层析纯化出目的蛋白vMIP2。体外活性研究表明纯化的vMIP2可以有效地抑制R5和X4 HIV—1在人外周血单核细胞上的复制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号