首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that glucocorticoid stimulation mediates the effect of exercise on circadian clock resetting in hamsters. We injected animals with 1 and 5 mg dexamethasone—a potent glucocorticoid agonist—at zeitgeber time (ZT) 4 and ZT6, circadian phases at which vigorous exercise induces maximal phase advances of about 3h. Neither dose of dexamethasone induced phase shifts that were significantly larger than those induced by injections of saline vehicle at either of the phases tested. Some animals, however, showed quite large and consistent phase shifts to repeated injections whether with saline or dexamethasone, such that there was a statistically significant correlation between individuals' responses to the two treatments. The data indicate no role for increased glucocorticoid activity in mediating the effects of exercise on circadian phase shifting, but suggest a modest role for nonspecific stimulation, independent of exercise, in inducing phase shifts at ZT4-ZT6. (Chronobiology International, 18(2), 203-213, 2001)  相似文献   

2.
Clinical aspects of human circadian rhythms   总被引:3,自引:0,他引:3  
Circadian rhythmicity can be important in the pathophysiology, diagnosis, and treatment of clinical disease. Due to the difficulties in conducting the necessary experimental work, it remains unknown whether approximately 24-h changes in pathophysiology or symptoms of many diseases are causally linked to endogenous circadian rhythms or to other diurnal factors that change across the day, such as changes in posture, activity, sleep or wake state, or metabolic changes associated with feeding or fasting. Until the physiology is accurately known, appropriate treatment cannot be designed. This review includes an overview of clinical disorders that are caused or affected by circadian or diurnal rhythms. The clinical side effects of disruption of circadian rhythmicity, such as in shiftwork, including the public health implications of the disrupted alertness and performance, are also discussed.  相似文献   

3.
Subjects who slept for 4 h from 0000, and for a second 4 h variously distributed over the day, have provided values for rectal temperature and for urinary excretion of water, potassium, sodium, chloride, phosphate, creatinine, calcium and urate in the sleeping subject at all hours of the 24. These are compared with similar values in the wakeful subject. Temperature was lower during sleep at all hours except 1000 and 1200, and the difference was maximal shortly before 0000. At all hours potassium excretion was lower and phosphate excretion higher during sleep. Cosinor analysis of the different variables in the sleeping subject is compared with that in subjects following nycthemeral habits, and the interaction between endogenous rhythms and external influences such as sleep is discussed. The phasing of the temperature and urinary rhythms was essentially normal by the end of the observations. By contrast in a subject who slept at irregular hours mimicking the habits of an air pilot a free-running rhythm unrelated to the habits of sleep emerged. When he was finally living again on normal time his temperature and urinary acrophases had moved to the middle of the night. Phosphate excretion was largely exogenous, falling consistently when subjects rose after 8 h, but not after 4 h of sleep.  相似文献   

4.
Effects of light on human circadian rhythms.   总被引:2,自引:0,他引:2  
Blind subjects with defective retinal processing provide a good model to study the effects of light (or absence of light) on the human circadian system. The circadian rhythms (melatonin, cortisol, timing of sleep/wake) of individuals with different degrees of light perception (n = 67) have been studied. Blind subjects with some degree of light perception (LP) mainly have normally entrained circadian rhythms, whereas subjects with no conscious light perception (NPL) are more likely to exhibit disturbed circadian rhythms. All subjects who were bilaterally enucleated showed free running melatonin and cortisol rhythms. Studies assessing the light-induced suppression of melatonin show the response to be intensity and wavelength dependent. In contrast to ocular light exposure, extraocular light failed to suppress night-time melatonin. Thus, ocular light appears to be the predominant time cue and major determinant of circadian rhythm type. Optimisation of the light for entrainment (intensity, duration, wavelength, time of administration) requires further study.  相似文献   

5.
Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.  相似文献   

6.
From circadian rhythms to cancer chronotherapeutics   总被引:14,自引:0,他引:14  
Mammalian circadian rhythms result from a complex organization involving molecular clocks within nearly all “normal” cells and a dedicated neuroanatomical system, which coordinates the so-called “peripheral oscillators.” The core of the central clock system is constituted by the suprachiasmatic nuclei that are located on the floor of the hypothalamus. Our understanding of the mechanisms of circadian rhythm generation and coordination processes has grown rapidly over the past few years. In parallel, we have learnt how to use the predictable changes in cellular metabolism or proliferation along the 24h time scale in order to improve treatment outcome for a variety of diseases, including cancer. The chronotherapeutics of malignant diseases has emerged as a result of a consistent development ranging from experimental, clinical, and technological prerequisites to multicenter clinical trials of chronomodulated delivery schedules. Indeed large dosing-time dependencies characterize the tolerability of anticancer agents in mice or rats, a better efficacy usually results from treatment administration near the least toxic circadian time in rodent tumor models. Programmable in time multichannel pumps have allowed to test the chronotherapy concepts in cancer patients and to implement chronomodulated delivery schedules in current practice. Clinical phase I and II trials have established the feasibility, the safety, and the activity of the chronotherapy schedules, so that this treatment method has undergone further evaluation in international multicenter phase III trials. Overall, more than 2000 patients with metastatic disease have been registered in chronotherapy trials. Improved tolerability and/or better antitumor activity have been demonstrated in randomized multicenter studies involving large patient cohorts. The relation between circadian rhythmicity and quality of life and even survival has also been a puzzling finding over the recent years. An essential step toward further developments of circadian-timed therapy has been the recent constitution of a Chronotherapy cooperative group within the European Organization for Research and Treatment of Cancer. This group now involves over 40 institutions in 12 countries. It is conducting currently six trials and preparing four new studies. The 19 contributions in this special issue reflect the current status and perspectives of the several components of cancer chronotherapeutics.  相似文献   

7.
The behavioural rhythms of three species of nocturnal insects were studied: locomotion in a cockroach, luminescence in a firefly and luminescence in a glow-worm. The behaviour was released at the change from light to dark in all cases. In continuous dim light, a circadian rhythm was apparent with a period of from 22.5 to 27 h in the cockroach, and from 19 to 23.5 h in the glow-worm. In constant dim light, the cockroach shifted the phase of its rhythm when subjected to a change of temperature. A temperature step down some time prior to the expected onset of locomotion generated a phase advance, whereas a temperature step up generated a phase delay; the greater the step up, the greater the phase delay. By advancing the change from light to dark, it was found that glow-worms could synchronize immediately to advances of up to about 6 h only. At greater advances an increasing phase angle difference between onsets of darkness and activity occurred. However, if a temperature step down was applied at the light change, immediate synchronization occurred up to 9–12 h before the normal onset. A theory is propounded which assumes that the onset of rhythmic behaviour is determined by the interaction of a circadian process of sensitization and a threshold for release of the behaviour. The threshold is high at high temperatures and light intensities, and low at low values of these. A temperature step up raises the threshold and delays the activity while a step down lowers the threshold and advances the activity.  相似文献   

8.
A shorter phase angle between habitual wake time and underlying circadian rhythms has been reported in evening types (E types) compared to morning-types (M types). In this study, phase angles were compared between 12 E types and 12 M types to verify if this difference was observed when the sleep schedule was relatively free from external social constraints. Subjects were selected according to their Morningness-Eveningness Questionnaire score (MEQ score). There were 6 men and 6 women in each group (ages 19-34 years), and all had a habitual sleep duration between 7 and 9 h. Sleep schedule was recorded by actigraphy and averaged over 7 days. Circadian phase was estimated by the hour of temperature minimum (T(min)) in a 26-h recording and by the timing of the onset of melatonin secretion (dim-light melatonin onset [DLMO]) measured in saliva samples. Phase angles were defined as the interval between phase markers and averaged wake time. Results showed that, in the present experimental conditions, phase angles were very similar in the 2 groups of subjects. However, results confirmed the previously reported correlation between phase and phase angle, showing that a later circadian phase was associated with a shorter phase angle. Gender comparisons showed that for a same MEQ score, women had an earlier DLMO and a longer phase angle between DLMO and wake time. Despite a significant difference in the averaged circadian phases between E-type and M-type groups, there was an overlap in the circadian phases of the subjects of the 2 groups. Further comparisons were made between the 2 circadian types, separately for the subgroups with overlapping or nonoverlapping circadian phases. In both subgroups, the significant difference between MEQ scores, bedtimes, and wake times were maintained in the expected direction. In the subgroup with nonoverlapping circadian phases, phase angles were shorter in E-type subjects, in accordance with previous studies. However, in the overlapping subgroup, phase angles were significantly longer in E types compared to M types. Results suggest that the morningness-eveningness preference identified by the MEQ score refers to 2 distinct mechanisms, 1 associated with a difference in circadian period and phase of entrainment and the other associated with chronobiological aspects of sleep regulation.  相似文献   

9.
The geniculohypothalamic tract (GHT) is a projection from the intergeniculate leaflet to the suprachiasmatic nucleus (SCN). The GHT exhibits neuropeptide Y (NPY) immunoreactivity and appears to communicate photic information to the SCN. Microinjection of NPY into the SCN has been found to phase shift circadian rhythms of hamsters housed in constant light in a manner similar to the phase shifts produced by pulses of darkness or triazolam injections. In the present study, NPY was injected into the SCN of Syrian hamsters housed in constant darkness and was found to produce phase shifts similar to those seen in hamsters housed in constant light. Microinjections were not followed by wheel running during the subjective day (the time when NPY microinjections are followed by significant phase advances). These data suggest that NPY produces phase shifts by some mechanism other than by inducing wheel running or by inhibiting the response of SCN neurons to light and supports a role for NPY in nonphotic shifting of the circadian clock.  相似文献   

10.
Cryptochromes are blue/UV-A-absorbing photoreceptor proteins discovered originally in plants and so named because their nature proved elusive in over a century of research. Now we know that the photoreceptor essential for proper seedling establishment in blue light has homologues in the animal kingdom - in insects, in mice and in humans. In recent months, evidence has emerged pointing to a common role for cryptochromes in all of these organisms in entraining the circadian clock, a biochemical timing mechanism running within cells, synchronizing metabolism to the daily light-dark cycle and having consequences on a much larger scale in the regulation of behaviour such as the sleep-wake cycle.  相似文献   

11.
A model equation for circadian rhythms describes all known general results under constant conditions and under the influence of Zeitgebers. This equation is used for computing influences of phase shifts of the Zeitgeber on circadian rhythms. A phase shift of the Zeitgeber corresponds to the shift of local time as a result of long-distance flights in eastward or westward direction. The theoretical results of four types of six-hour phase shifts and of four types of 12-hour phase shifts are compared with corresponding results of animal and human experiments. The duration of re-entrainment to the shifted Zeitgeber is of especial practical interest, because the shifted subject is less efficient during re-entrainment. This duration depends, for instance, on the direction of the phase shift and on the natural period of the shifted subject. For practical purposes, rules for shortening the duration of re-entrainment are derived from the theoretical results.  相似文献   

12.
13.
Phase movements of apparent circadian rhythms during 2 wk of forward or backward displacement of the sleep-wake cycle were investigated in four experimental series in a subject. The 7-hr delay or advance of sleep due to a westward or an eastward transmeridian flight was duplicated by corresponding sleep displacements during experimental night shifts. Sudden phase advances (or delays) by several hours were observed in the rhythms of continuously recorded rectal temperature and urinary excretion rates (4-hr collection intervals) of adrenaline, noradrenaline and aldosterone the first day after sleep-wake displacement. The desired 7-hr phase-shifts were reached more quickly and completely when the phase was delayed than when it was advanced. In addition, the best-fitting period of these rhythms became shorter than 24 hr when the phase was delayed, and longer than 24 hr when it was advanced. The apparent rhythms of urine flow and electrolyte excretions (potassium, sodium, zinc) were much weaker and their phase movements more irregular than those of hormonal excretion. It is concluded that the sudden phase-shifts resulted from the immediate adaptation of the exogenous components of the rhythms to the demands of the displaced sleep-wake patterns (masking effects) and that the true phase-shifts of the endogenous components followed more slowly and gradually.  相似文献   

14.
Although light is considered the primary entrainer of circadian rhythms in humans, nonphotic stimuli, including exercise and melatonin also phase shift the biological clock. Furthermore, in birds and nonhuman mammals, auditory stimuli are effective zeitgebers. This study investigated whether a nonphotic auditory stimulus phase shifts human circadian rhythms. Ten subjects (5 men and 5 women, ages 18-72, mean age +/- SD, 44.7 +/- 21.4 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h auditory or control stimulus from 0100 to 0300 on the second and third nights (presentation order of the stimulus and control was counterbalanced). Core body temperature (CBT) was collected and stored in 2-min bins throughout the study and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Circadian phase of dim light melatonin onset (DLMO) and of CBT minimum, before and after auditory or control presentation was assessed. The auditory stimulus produced significantly larger phase delays of the circadian melatonin (mean +/- SD, -0.89 +/- 0.40 h vs. -0.27 +/- 0.16 h) and CBT (-1.16 +/- 0.69 h vs. -0.44 +/- 0.27 h) rhythms than the control. Phase changes for the two circadian rhythms also positively correlated, indicating direct effects on the biological clock. In addition, the auditory stimulus significantly decreased fatigue compared with the control. This study is the first demonstration of an auditory stimulus phase-shifting circadian rhythms in humans, with shifts similar in size and direction to those of other nonphotic stimuli presented during the early subjective night. This novel stimulus may be a useful countermeasure to facilitate circadian adaptation after transmeridian travel or shift work.  相似文献   

15.
16.
We recorded circadian locomotor activity rhythms of house sparrows (Passer domesticus) exposed to low-amplitude light-dark cycles (2∶1 lux) with periods of 22.5 or 24.5 h. Under these conditions the circadian rhythms of the majority of the birds were not synchronized by the light cycle but either free-ran or showed relative coordination. However, when melatonin was administered continuously via subcutaneous silastic implants the rhythms became synchronized. It is proposed that melatonin facilitates synchronization either by weakening the circadian oscillatory system thereby increasing its range of entrainment, or by enhancing circadian sensitivity to the light Zeitgeber. In general, the results suggest that melatonin, besides its well-known phasic effects on the circadian system also has important tonic effects modifying the ease with which circadian systems can be entrained.  相似文献   

17.
This paper illustrates a method for automatic data recording using the printer port of personal computer and software designed ad hoc. The system was tested by measuring circadian rhythms of activity in the subterranean rodent Ctenomys talarum. Data is recorded in a text-only comma-delimited file, and displayed on screen.  相似文献   

18.
19.
20.
Circadian rhythms are self-sustaining oscillations that free-run in constant conditions with a period close to 24 h. Overt circadian rhythms have been studied mostly using onset phase as the marker for the underlying pacemaker. Using in vivo online pineal microdialysis, the authors have performed detailed analysis of free-running profiles of rat pineal secretory products, including N-acetylserotonin (NAS) and melatonin that have precisely defined onsets and offsets. When rats entrained in LD 12:12 were released into constant darkness (DD), both onset and offset phases of melatonin and NAS free-run. However, while onsets free-run with a period closer to a day (FRP(on) = 24-24.17 h) at the beginning, offset phases free-run with significantly larger FRPs (free-running periods) (FRP(off) = 24.24-24.42 h). This asymmetric free-running of onset and offset of NAS and melatonin in DD resulted in a 60- to 120-min increase of secretion duration of both NAS and melatonin. The rate of expansion of melatonin duration was 10 to 15 min per circadian cycle. The expansion of melatonin secretion duration ended for some within 4 days, while others were still expanding by the end of 10th day in DD. These results revealed that upon release into DD, the pacemaker's oscillation is initially driven by 2 forces, free running and decompression, before reaching a stable state of free running, and suggest that the circadian pacemaker may be an elastic structure that can decompress and compress under varying photic conditions. They also illustrate the importance of using both onset and offset of a given rhythm as phase markers, as compression/decompression, and transient disparity between FRP(on) and FRP(off) may be a common phenomenon of the circadian pacemaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号