首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars.  相似文献   

2.
Uptake of Proteins by Plant Roots   总被引:1,自引:0,他引:1  
The patterns of uptake of fluorescein-labelled lysozyme (Fl-lysozyme) by barley, maize, onion, tomato and vetch are similar as revealed by fluorescence microscopy. Penetration of the root cap and through the epidermis into the cortex increases with time of exposure and decreases with higher salt concentrations. In fact, one molar ethylammonium chloride can remove most of the absorbed protein from treated roots and the space observed to be stained by Fl-lysozyme in this manner can be visualized as “free space”. Results with sterile and non-sterile barley roots were indistinguishable. At low ionic strength, Fl-lysozyme can penetrate cells and complex with nucleoli. Such cell protoplasts appear “coagulated”. Uptake results with fluorescein per se were unlike those with protein. The uptake of a much larger molecule, ferritin, is confined to the epidermis and root cell walls. Localized, absorbed protein and root growth inhibition by basic proteins have yet to be related.  相似文献   

3.
The kinetics of uptake of K+ and Mg2+ were studied by using intact soybean [Glycine max (L.) Merr. cv. Amsoy] roots. Uptake of K+ in the concentration range 1.29 × 10?5 to 1.82 × 10?3 M can be represented by two phases of a single, multiphasic mechanism. Similarly, uptake of Mg2+ in the concentration range 4.10 × 10?6 to 2.49 × 10?4M was biphasic.  相似文献   

4.
Nutrient Uptake by Different Parts of the Intact Roots of Plants   总被引:4,自引:0,他引:4  
An apparatus is described for studying the uptake of ions byshort segments of intact root systems grown in water culture. When the entire root systems of young cereal plants are suppliedwith o'I ppm, P or Sr the quantities of both ions accumulatedin segments 3–5 mm long, or translocated from them toother tissues, are considerably smaller than those which movelongitudinally in the cortex for short distances. This process,which is under metabolic control, causes ions to be releasedto the external solution from parts of the root a few mm distantfrom the site of entry. The contribution, to the nutrition of barley plants 3–4weeks old, of different parts of the root system has been investigated.Between seminal axes, nodal axes, and laterals total uptakeper unit length of root varies largely, though not entirely,with volume. The ratio in which phosphate and strontium areabsorbed is not constant throughout the root system, the absorptionof phosphate being relatively greater by laterals. Little translocationoccurs from the apical 3 mm of roots and the fraction of theabsorbed ions translocated to shoots from older root segmentsis considerably greater for nodal axes than for seminal axesor laterals. The significance of the distribution of absorbing power throughoutthe root system is considered in relation to the nutrition ofplants grown in soil, especially when the rate of diffusionto the root surface may limit nutrient uptake.  相似文献   

5.
多花黑麦草对啤酒废水净化功能的研究   总被引:29,自引:5,他引:29  
1 引言 利用水生高等植物净化污水,国内外已有很多报道,1992年丁树荣等首先利用人工基质无土栽培多花黑麦草(Lolium multiflorum Lam.)净化缫丝废水获得成功,是利用陆生植物于高等水生植物净化塘中以净化有机污水的首例,并提出了解决在亚热带和温带冬季低温地区,利用高等水生植物净化污水时冬季不能有效运转难题的新途径,而作者于1987—  相似文献   

6.
The ATP-dependent uptake of L-glutamate into synaptic vesicles has been well characterized, implicating a key role for synaptic vesicles in glutamatergic neurotransmission. In the present study, we provide evidence that vesicular glutamate uptake is selectively inhibited by the peptide-containing halogenated ergot bromocriptine. It is the most potent inhibitor of the agents tested: the IC50 was determined to be 22 microM. The uptake was also inhibited by other ergopeptines such as ergotamine and ergocristine, but with less potency. Ergots devoid of the peptide moiety, however, such as ergonovine, lergotrile, and methysergide, had little or no effect. Although bromocriptine is known to elicit dopaminergic and serotonergic effects, its inhibitory effect on vesicular glutamate uptake was not mimicked by agents known to interact with dopamine and serotonin receptors. Kinetic data suggest that bromocriptine competes with glutamate for the glutamate binding site on the glutamate translocator. It is proposed that this inhibitor could be useful as a prototype probe in identifying and characterizing the vesicular glutamate translocator, as well as in developing a more specific inhibitor of the transport system.  相似文献   

7.
Uptake of glycine by non-mycorrhizal Lolium perenne.   总被引:8,自引:0,他引:8  
Plants of Lolium perenne were grown in sterile solution culture. 15N-labelled glycine (Gly) coupled with gas chromatograph mass spectrometry was used to prove that non-mycorrhizal plants of L. perenne are capable of acquiring N in the form of intact Gly. It was estimated that a minimum of 80% of Gly-N uptake, over a 3 h period, was as intact Gly, though possible processes resulting in deviation from this estimate are discussed. The relative incorporation of 15N derived from Gly uptake into serine (Ser) compared with other amino acids in the root amino acid pool suggested the enzyme serine:glyoxylate aminotransferase was at least partly responsible for the synthesis of Ser from Gly. Defoliation was shown to reduce Gly uptake by L. perenne. The addition of either 25 mol x m(-3) sucrose or 50 mol x m(-3) glucose to the uptake solution of defoliated plants increased Gly-N uptake compared with both defoliated plants without sugars and with undefoliated plants. Addition of a glucose analogue, 3-O-methyl-D-glucopyranose, that is absorbed but not metabolized by plants, did not affect Gly uptake by defoliated plants. Increasing pH from 3.5 to 9.2 caused a reduction in Gly uptake. Results of the effects of defoliation and pH are consistent with Gly uptake by L. perenne being by an energy-dependent proton symport. When either or Gly were supplied to plants at equimolar concentrations, uptake was five times greater than that of Gly at pH 6 and 13 times greater at pH 9.  相似文献   

8.
The effects of plant density on shoot and leaf lamina zenithangles (i e the angles with respect to the vertical) were investigatedin Lolium multiflorum and Paspalum dilatatum plants grown inpots either outdoors or in a glasshouse Tillers appeared abovethe ligule of their subtending leaf with a small zenith anglebut, in plants grown at low densities, gradually adopted a morehorizontal position In plants grown at high densities this gradualincrease in shoot zenith angle with age was strongly reducedThe average shoot zenith angle at a given time was lower (ie tillers were more erect) at high, compared to low plant densitiesShoot number per plant and average shoot zenith angle per plantwere directly related In P dilatatum plants the leaf lamina remained nearly horizontalat any plant density This observation indicates that the movementof the leaf lamina, pivoting at the point of attachment to theleaf sheath, compensated the movement of the shoot, pivotingat the base of the leaf sheath-tube Shoot angle responses to plant density would place leaf laminaeat different heights within the canopy, affecting their abilityto compete for light and their susceptibility to wind impactand herbivore grazing Foliage architecture, Lolium multiflorum Lam, Paspalum dilatatum Poir, plant density, neighbour effects, shoot angle, leaf angle  相似文献   

9.
10.
In soybean (Glycine max L. Merr. cv Kingsoy), NO3 assimilation in leaves resulted in production and transport of malate to roots (B Touraine, N Grignon, C Grignon [1988] Plant Physiol 88: 605-612). This paper examines the significance of this phenomenon for the control of NO3 uptake by roots. The net NO3 uptake rate by roots of soybean plants was stimulated by the addition of K-malate to the external solution. It was decreased when phloem translocation was interrupted by hypocotyl girdling, and partially restored by malate addition to the medium, whereas glucose was ineffective. Introduction of K-malate into the transpiration stream using a split root system resulted in an enrichment of the phloem sap translocated back to the roots. This treatment resulted in an increase in both NO3 uptake and C excretion rates by roots. These results suggest that NO3 uptake by roots is dependent on the availability of shoot-borne, phloem-translocated malate. Shoot-to-root transport of malate stimulated NO3 uptake, and excretion of HCO3 ions was probably released by malate decarboxylation. NO3 uptake rate increased when the supply of NO3 to the shoot was increased, and decreased when the activity of nitrate reductase in the shoot was inhibited by WO42−. We conclude that in situ, NO3 reduction rate in the shoot may control NO3 uptake rate in the roots via the translocation rate of malate in the phloem.  相似文献   

11.
The extent to which phosphate can be absorbed directly fromthe outer medium by stolon internodes and contribute to thetotal accumulation of phosphate by intact plants of white clover(Trifolium repens L. cv. Blanca) was assessed in hydroponicexperiments in a controlled environment room. The uptake ofphosphate by intact roots or stolons was measured by sealinga segment (6-0 mm long) across a flow-cell in which 32P-labellednutrient solution was circulated for 24 h, the rest of the rootsystem receiving unlabelled nutrient solution. The rate of uptakeof phosphate (µmol g–1 d–1 dry wt. basis)by roots was more than 300 times that by intact stolons. Pretreatmentof stolons by gentle abrasion to remove cuticle, so as to simulatethe condition of stolons in the field, increased the uptakeof phosphate 7-fold compared with that of intact stolons. However,the potential of stolons to contribute to the P status of whitedover in the field was calculated to be small (5%). When an incision was made through the hypodermal layer of stolons,the rate of phosphate uptake greatly increased, attaining 71%of that by root segments. This increase, which was greater athigher phosphate concentrations, indicates that the suberi.zedhypodermis constitutes a major barrier to the influx of phosphatein the stolon. After withholding phosphate for different time intervals, thesubsequent rate of phosphate uptake by roots was increased 2-3-foldafter 2 d phosphate deprivation and 3-4-fold after 6 d or 13d phosphate deprivation. A higher proportion of absorbed phosphatewas transported to shoots in phosphate-deprived plants. After1 d of uptake following restoration of the phosphate supply,the concentrations of labelled phosphate in shoots were greaterthan in control plants, although the concentrations of labelin roots was less. However, the rate of uptake of phosphateby stolons, following deprivation, was not significantly increased.These results suggest that the mechanism regulating the enhancedrate of phosphate loading into the xylem, initiated by a periodof phosphate deprivation, is specific to roots and is not inducedin stolons. The results are discussed in relation to the growth and acquisitionof phosphate by white clover in the field. Key words: Nutrient deficiency, phosphate, stolons, transport (ions), Trifolium repens  相似文献   

12.
Abstract: Cis-3-(3, 4-dichlorophenyl)-2- N , N -dirnethylaminomethyl-bi-cyclo-[2, 2, 2]-octane hydrochloride (LR5182) inhibited the uptake of dopamine by a synaptosomal fraction of corpus striatum of rat brain with an inhibitor constant (Ki value) of 6 nM. Kinetics analysis according to the methods of Lineweaver-Burk and Dixon revealed a competitive inhibition of dopamine uptake of LR5182. When the uptake of dopamine by the noradrenergic terminals in the synaptosomal fraction of cerebral cortex was selectively abolished by desipramine, LR5182 competitively inhibited the uptake of dopamine by the dopaminergic terminals with a Ki value of 19 nM. LR5182 was also a competitive inhibitor of noradrenaline uptake by synaptosomes of hypothalamus and cerebral cortex with, however, one-third to one-tenth the effectiveness, as indicated by the larger Ki values, 52 and 58 nM, respectively. Structure-activity studies with LR5182 and related compounds supported the idea that the uptake sites of dopamine favored a gauche conformer.  相似文献   

13.
Callus cultures were initiated from roots, apical meristem tips and leaf explants of several genotypes of Lolium multiflorum L. (Italian Ryegrass). Genotypes were selected which showed a high frequency of callus initiation and from which plants could be regenerated. Plants could be routinely produced from root-derived callus of only one of the genotypes tested. The selected genotypes were still amenable if the temperature and concentration of 2,4-D in the medium were altered. Increase in temperature caused callus from one genotype to give rise to more albino regenerants. Callus formation and plant regeneration occurred at a higher frequency from diploid than tetraploid explants. All regenerants from the diploid cultures had the 2n = 2x = 14 chromosome number whereas plants regenerated from callus derived from tetraploid cultures lost up to 3 chromosomes.  相似文献   

14.
15.
The uptake of a specific 14C-amino acid by the heterotrophic microorganisms in the epilimnion of an eutrophic lake was influenced by the presence of other amino acids. The effect of unlabeled serine on 14C-glycine uptake was shown to be caused by competitive inhibition, which changed the interpretation of the kinetic parameters, the turnover time, Tt, and the sum of a transport constant, (Kt + (Sn), and the natural substrate concentration. The maximum velocity of uptake, Vmax, is unaffected by the competitive inhibition.  相似文献   

16.
镁肥对水稻镁吸收与分配及稻米食味品质的影响   总被引:5,自引:0,他引:5  
以‘宁粳2号’为材料,采用田间小区试验方法研究了单季粳稻施用镁肥后对镁吸收分配的影响。结果表明,从拔节到始穗期,水稻体内镁的阶段吸收量和吸收速度最高,分别为7.22 kg.hm-2和0.40 kg.hm-2.d-1;从拔节期到齐穗期,镁肥的施用促进了水稻对镁的吸收,其它生育期对外界镁浓度变化不敏感;镁肥的施用降低了镁在茎鞘和叶片中的分配比例,提高了镁在穗部的分配比例;齐穗后15~30 d为穗部积累镁的高峰期;在本实验范围内,随施肥水平的提高,稻米中的镁含量升高,RVA(Rapid of viscosity analysis)谱中最终黏度、回复值及消减值显著下降,最高黏度、热浆黏度和崩解值显著上升,糊化温度没有明显差异。施用镁肥提高了稻米食味品质,这其中以120 kg.hm-2用量效果最好。  相似文献   

17.
The effects of the synthetic auxin and herbicide 2,4-dichlorophenoxyaceticacid (2,4-D) on K$ and Cl uptake and H$ release by youngexcised maize roots has been studied. Brief exposure to 2,4-D(0.01 mmol dm–3) at pH 3.5 causes a large depolarizationof the electrical potential across the root plasma membranesand converts K$ uptake to K$ leakage into the bathing solution.These results can be explained by the increased H$ permeabilityof the membranes induced by the weak acid 2,4-D. The depolarizationresults in a less favourable electrochemical potential gradientfor K$ uptake across these membranes. These effects are notrelated to the auxin properties of 2,4-D as the nonauxin 3,5-dichlorophenoxyaceticacid (3,5-D) gives rise to similar effects. The relative depolarizationsinduced by a range of weak acids appear to be unrelated to theiroil/water partition coefficients. In contrast, on bathing the roots for longer periods in solutions(pH > 5) containing 2,4-D (0.01 mmol dm–3) K$ and Cluptake and H$ release are inhibited. These effects are not shownwith 3,5-D suggesting an auxin-linked action for 2,4-D. Alsothe electrical potential across the plasma membranes is onlyslightly depolarized so that a change in the electrochemicalpotential gradient cannot be invoked to explain the loweredion fluxes. The evidence is consistent with the removal of anenergy supply to a metabolically linked K/H exchangemechanism in the plasma membranes. It is likely that both modes of action would operate to lowerion uptake under soil-grown conditions, the former becomingmore manifest in acidic soils.  相似文献   

18.
19.
The Initial Uptake of Ions by Barley Roots: I. UPTAKE OF ANIONS   总被引:2,自引:0,他引:2  
Experiments have been carried out to examine the applicabilityof the Goüy–Chapman electrical double-layer theoryto the initial entry of anions into excised barley roots. Anattempt was made to separate the total quantity of labellediodide or sulphate ions which had entered the roots under varyingconditions into three fractions: the two fractions which couldbe successively eluted with water and extracted with an exchangingsolution and that which remained in the roots after these treatments.Except at a low temperature and a low hydrion concentration,the three fractions could not clearly be distinguished, andthere were indications of the presence of metabolically maintainedpositive sites. However, the effect of varying pH on the rateat which anions were eluted with water was consistent with thepresence in the roots of a system of pores, the walls of whichcarried a varying number of negative charges depending on thehydrion concentration. The effect of calcium ions on the magnitudeof the water extractable fraction also accorded qualitativelywith the double-layer theory.  相似文献   

20.
Ca2+ is an important regulatory ion and alteration of mitochondrial Ca2+ homeostasis can lead to cellular dysfunction and apoptosis. Ca2+ is transported into respiring mitochondria via the Ca2+ uniporter, which is known to be inhibited by Mg2+. This uniporter-mediated mitochondrial Ca2+ transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg2+ inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg2+ and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg2+ inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca2+ uptake. The model also appropriately depicts the inhibitory effect of Mg2+ on the uniporter function, in which Ca2+ uptake is hyperbolic in the absence of Mg2+ and sigmoid in the presence of Mg2+. The model suggests a mixed-type inhibition mechanism for Mg2+ inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca2+ handling to understand the mechanisms by which Ca2+ mediates signaling pathways and modulates energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号