首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bakketun  Thomas  Gilhus  Nils Erik  Rekand  Tiina 《Scoliosis》2019,14(1):1-8
The purpose of this study was to describe the relationship between pelvic inclination (PI) and lumbar lordosis (LL). Pelvic inclination and pelvic tilt are two different names for the same metric. The geometrical parameters of the spine and pelvis were measured using surface topography scanning, and the data was explored for any physical relationships using principal component analysis. Once widely assumed to be a direct correlation, research in the 1980s first cast doubt upon the PI to LL relationship. And yet, other studies have suggested a relationship does exist. Decades later, the rehabilitation professionals often still rely on this supposed correlation when making decisions about rehabilitation treatment interventions. This theoretical relationship requires further clarification, which is explored herein. Surface topography imaging is a technology that has proven to be a radiation-free way to produce accurate, reliable skeletal alignment measures. Patient data from one physical rehabilitation clinic was collected at the time of initial assessment. Patients presented with a wide range of musculoskeletal complaints. Surface topography scans were performed on 107 patients at the commencement and completion of their therapy. Principal component analysis was performed on the collected data to determine how these spine and pelvic alignment parameters changed between the two points in time and what trends and/or relationships exist between the parameters. Our analysis evaluated eight spinal and pelvic measurements as input and focused on LL and PI as the two principal components at time points of beginning and completion of treatment. Pelvic inclination and lumbar lordosis changed during treatment but were not correlated. Our data demonstrates that pelvic inclination and lumbar lordosis do not have a predictable relationship as previously assumed.  相似文献   

3.
Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion.  相似文献   

4.
An intracellular actin motor in bacteria?   总被引:3,自引:0,他引:3  
Actin performs structural as well as motor-like functions in eukaryotic cells. Orthologues of actin have also been identified in bacteria, where they perform an essential function during cell growth. Bacterial actins are implicated in the maintenance of rod-shaped cell morphology, and appear to form a cytoskeletal structure, localising as helical filaments underneath the cell membrane. Recently, a plasmid-borne actin orthologue has been shown to perform a mitotic-like function during segregation of a plasmid, and chromosomally encoded actin proteins were found to play an important role in chromosome segregation. Based on the findings that actin filaments are dynamic structures in two bacterial species, we propose that actins perform motor functions rather than a purely structural role in bacteria. We suggest that an intracellular motor exists in bacteria that could be derived from an ancestral actin motor that was present in cells early in evolution.  相似文献   

5.
6.
Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I.  相似文献   

7.
L1210 leukemia cell cytosol was analysed for the presence of DNase I activity. No free activity was determined in crude cytosol. DNase I enzyme was found to occur in a latent form bound to cytoplasmic actin. DNase-actin complex was partially isolated by Sephadex filtration and DNase I-like activity was demonstrated after SDS gel electrophoresis of the complex and enzyme renaturation. The results were compared with those for synthetic complex of pancreatic bovine DNase I and chicken muscle actin.  相似文献   

8.
The question, "What is an organism?," formerly considered as essential in biology, has now been increasingly replaced by a larger question, "What is a biological individual?" On the grounds that i) individuation is theory-dependent, and ii) physiology does not offer a theory, biologists and philosophers of biology have claimed that it is the theory of evolution by natural selection that tells us what counts as a biological individual. Here I show that one physiological field, immunology, offers a theory that makes possible a biological individuation based on physiological grounds. I give a new answer to the question of the individuation of an organism by linking together the evolutionary and the immunological approaches to biological individuation.  相似文献   

9.
10.
Numerous studies have shown that the acetylcholine receptor (AChR) is inserted in the plasma membrane of the muscle fiber, and that it is focalized at the site of neuromuscular junctions, as an effect of neural influence. In contrast, acetylcholinesterase (AChE) may be presynaptic or anchored in the basal lamina, as well as postsynaptic at neuromuscular junctions. We investigated the origin of the junctional enzyme, particularly the collagen-tailed asymmetric A12 forms, by studying the AChE contents of heterologous rat and chicken neuromuscular cocultures by immunohistochemical and biochemical methods. We found that the overall content of AChE, in the neuromuscular cocultures, including the A12 form, was essentially identical to the sum of the contents of separate myotube and motoneuron cultures. The sedimentation coefficients of the rat and chicken asymmetric forms are sufficiently different to clearly differentiate these enzymes in sucrose gradients: 16 S for rat, 20 S for chicken A12 AChE. Sedimentation analyses of AChE in cocultures thus showed that the A12 form was of muscular origin. In the case of aneural cultures of myotubes, histochemical staining of AChE activity or immunohistochemical staining with specific antibodies showed only very scarce, faint concentrations of enzyme. Some patches of acetylcholine receptor (AChR) were, however, visible in these cultures. Neuromuscular contacts are readily established in cocultures of myotubes with embryonic motoneurons from spinal cords. In the presence of motoneurons, the myotubes presented a larger number of AChR patches. The most remarkable feature of neuromuscular cocultures was the presence of numerous intense AChE patches which always coincided with AChR clusters. By specifically staining nerve terminals with tetanus toxin, we could show an excellent correlation between neuromuscular contacts and the presence of AChE-AChR patches. We found that the AChE patches in heterologous cocultures could be stained exclusively by the anti-myotube AChE antiserum. The focalized enzyme is therefore exclusively, or very predominantly, provided by the myotube.  相似文献   

11.
Molecular dynamics simulations of an explicitly solvated cis-β-methylstyrene/chloroperoxidase-Compound I complex are performed to determine the cause of the high enantiospecificity of epoxidation. From the simulations, a two-dimensional free energy potential is calculated to distinguish binding potential wells from which reaction to 1S2R and 1R2S epoxide products may occur. Convergence of the free energy potential is accelerated with an adaptive biasing potential. Analysis of binding is followed by analysis of 1S2R and 1R2S reaction precursor structures in which the substrate, having left the binding wells, places its reactive double bond in steric proximity to the oxyferryl heme center. Structural analysis of binding and reaction precursor conformations is presented. We find that 1), a distortion of Glu(183) is important for CPO-catalyzed epoxidation as was postulated previously based on experimental results; 2), the free energy of binding does not provide significant differentiation between structures leading to the respective epoxide enantiomers; and 3), CPO's enantiospecificity toward cis-β-methylstyrene is likely to be caused by a specific group of residues which form a hydrophobic core surrounding the oxyferryl heme center.  相似文献   

12.
Abstract

This interpretation of the second substantive session of the Third United Nations Conference on the Law of the Sea is based on observations of the Plenary, General Committee, Committees I, II, and III, and their Working Groups from 7 April to 9 May 1975 in Geneva. The observations are supplemented with information derived in multiple interviews with sixty‐seven delegates from twenty‐nine delegations. Part I of the paper describes general characteristics of the Geneva negotiations and compares them with the first round of substantive negotiations held in Caracas in 1974. There was much less rhetoric used in Geneva as compared to Caracas, especially in Committee I. Also in Committee I, the Algerian delegation succeeded within the Group of 77 in their initiative to link the seabed issue with the problem of control over global commodities in the context of claims to establish a New Economic Order. The negotiations in Committee II were seriously affected by the absence of effective leadership and the proliferation of small negotiating groups without links between them. Moreover, within Committee II the tension between the coastal states and the “Disadvantaged Group”; within the Group of 77 increased almost to the point of rupture.

As negotiations proceeded in Committee I, the gap between the advanced industrial countries and the Group of 77 widened on a number of crucial issues. This gap increased to the point where delegates from the Group of 77 were privately arguing that the seabed issue had been added to the issue of the Economic Zone as the price for the major maritime countries securing their preferences on the issue of unimpeded passage through straits used for international navigation. The Informal Single Negotiating Text, Part I, which was distributed at the end of the Geneva session, was different in several important respects from the text on which a consensus had been privately negotiated. This stimulated the expression of views within the delegations of several advanced industrial countries that the price of agreement on a treaty was currently too high.  相似文献   

13.
Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.  相似文献   

14.
15.
Rouslan G. Efremov  Leonid A. Sazanov 《BBA》2012,1817(10):1785-1795
Complex I is a key enzyme of the respiratory chain in many organisms. This multi-protein complex with an intricate evolutionary history originated from the unification of prebuilt modules of hydrogenases and transporters. Using recently determined crystallographic structures of complex I we reanalyzed evolutionarily related complexes that couple oxidoreduction to trans-membrane ion translocation. Our analysis points to the previously unnoticed structural homology of the electron input module of formate dehydrogenlyases and subunit NuoG of complex I. We also show that all related to complex I hydrogenases likely operate via a conformation driven mechanism with structural changes generated in the conserved coupling site located at the interface of subunits NuoB/D/H. The coupling apparently originated once in evolutionary history, together with subunit NuoH joining hydrogenase and transport modules. Analysis of quinone oxidoreduction properties and the structure of complex I allows us to suggest a fully reversible coupling mechanism. Our model predicts that: 1) proton access to the ketone groups of the bound quinone is rigorously controlled by the protein, 2) the negative electric charge of the anionic ubiquinol head group is a major driving force for conformational changes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

16.
17.
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin–ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs.  相似文献   

18.
19.
Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeast and a few other model organisms. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called ComFiR to detect such protein complexes and further rank diseased complexes based on a query disease. We have shown that it has better performance in identifying protein complexes from human PPI data. This method is evaluated in terms of positive predictive value, sensitivity and accuracy. We have introduced a ranking approach and showed its application on Alzheimer’s disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号