首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
AIMS: Scarce knowledge about the distribution of enterococci species in wastewaters limits any statement on their reliability as faecal indicators or the implications of antibiotic resistance transmission by these organisms through the water cycle. Enterococci have been involved in nosocomial infections and the spreading of antibiotic resistance through the food chain. The species distribution of enterococci and the presence of resistant strains to vancomycin and erythromycin were analysed in more than 400 raw and treated urban wastewaters, surface waters receiving these treated wastewaters and hospital wastewaters from three European countries. METHODS AND RESULTS: A total of 9296 strains were isolated and biochemically phenotyped. The species identification was based on the comparison of biochemical profiles with those of more than 20000 enterococci isolates from an international study. The prevalence of enterococcal isolates resistant to erythromycin (ERE) and vancomycin (VRE) was also analysed. ERE strains were present in a high proportion in all the studied samples. VRE strains were also isolated in all studied countries despite the time elapsed since the use of antimicrobial glycopeptides in animal production was banned in the European Union. CONCLUSIONS: Enterococcus faecalis and Ent. faecium were the most abundant species in all the studied wastewaters. All the studied wastewaters demonstrated high diversity and similar population structure and composition. ERE and VRE isolates were detected in most of the wastewaters. SIGNIFICANCE AND IMPACT OF THE STUDY: Urban and hospital wastewaters are useful targets for the evaluation of the prevalence of ERE and VRE isolates in the environment. It appears that these bacteria could pass through wastewater treatment plants and be transferred to surface waters.  相似文献   

2.
Vancomycin-resistant enterococci (VRE) in Europe are thought to have emerged partly due to the use of the glycopeptide avoparcin in animal husbandry. We compared the occurrence of VRE in geographical regions of Europe in which until 1997 large amounts of avoparcin were used (Spain, United Kingdom, and Denmark) with the occurrence of VRE in Sweden, where avoparcin was banned in 1986. We also studied the relatedness between VRE strains from different regions and habitats. In total, 2,580 samples were collected from humans, animals, and the environment (soil, sewage, recipient water). VRE resistant to 20 microg/ml vancomycin were identified in 8.2% of the samples and were found most frequently in raw and treated urban sewage samples (means, 71% and 36% of the samples, respectively), pig manure (17%), and hospital sewage (16%). The proportions of VRE-positive sewage samples were similar in Sweden, Spain, and the United Kingdom, whereas pig feces and manure were more often positive in Spain than in Sweden (30% versus 1%). Most VRE were Enterococcus faecium carrying vanA, and computerized biochemical phenotyping of the isolates of different ecological origins showed a high degree of polyclonality. In conclusion, it seems that animal-associated VRE probably reflect the former use of avoparcin in animal production, whereas VRE in human-associated samples may be a result of antibiotic use in hospitals. Since there seems to be a reservoir of the resistance genes in all countries studied, precautions must be taken to limit the use of antibiotics and antibiotic-like feed additives.  相似文献   

3.
AIMS: The changes in structure and composition of faecal coliforms and enterococcal populations in sewage from different treatment plants, and the elimination of vancomycin- and erythromycin-resistant enterococci (VRE and ERE, respectively) in these treatment plants was analysed to determine any selective reduction. METHODS AND RESULTS: Faecal coliforms, enterococci, VRE, ERE and spores of sulphite-reducing bacteria were enumerated using standard methods. Samples were enriched where necessary in order to isolate antibiotic resistant strains. The structure and composition of these bacterial populations were determined by biochemical fingerprinting and clustering analysis. High diversity and similarity indexes were detected among all the bacterial populations in raw and treated sewage, independently of their origin and the treatment processes employed. Antibiotic resistant strains were detected in all sewage tested and no selective reduction was observed. CONCLUSIONS: The faecal coliforms and enterococci populations did not differ in the sewage samples studied. The vancomycin and erythromycin resistances of the enterococcal populations were similar in the sewage samples. Resistance to both antibiotics persisted after the treatment process independently of raw sewage flow, faecal origin or size of the human population contributing to sewage. However, sewage of mixed origin (human and animal) presented a lower similarity index for the two bacterial populations compared with that of the other human sewage analysed. SIGNIFICANCE AND IMPACT OF THE STUDY: Although a significant reduction in bacterial populations was observed, the persistence of VRE and ERE strains in the same proportions in sewage suggests that there is no selective elimination of bacterial populations during the treatment processes. The ability of antibiotic resistance strains to survive sewage treatment systems should be considered in certain water reuse programmes.  相似文献   

4.

Background  

Antimicrobial resistance is a serious threat in veterinary medicine and human healthcare. Resistance genes can spread from animals, through the food-chain, and back to humans. Sewage sludge may act as the link back from humans to animals. The main aims of this study were to investigate the occurrence of vancomycin resistant enterococci (VRE) in treated sewage sludge, in a Swedish waste water treatment plant (WWTP), and to compare VRE isolates from sewage sludge with isolates from humans and chickens.  相似文献   

5.
Vancomycin-resistant enterococcci (VRE) in Europe are thought to have emerged partly due to the use of the glycopeptide avoparcin in animal husbandry. We compared the occurrence of VRE in geographical regions of Europe in which until 1997 large amounts of avoparcin were used (Spain, United Kingdom, and Denmark) with the occurrence of VRE in Sweden, where avoparcin was banned in 1986. We also studied the relatedness between VRE strains from different regions and habitats. In total, 2,580 samples were collected from humans, animals, and the environment (soil, sewage, recipient water). VRE resistant to 20 μg/ml vancomycin were identified in 8.2% of the samples and were found most frequently in raw and treated urban sewage samples (means, 71% and 36% of the samples, respectively), pig manure (17%), and hospital sewage (16%). The proportions of VRE-positive sewage samples were similar in Sweden, Spain, and the United Kingdom, whereas pig feces and manure were more often positive in Spain than in Sweden (30% versus 1%). Most VRE were Enterococcus faecium carrying vanA, and computerized biochemical phenotyping of the isolates of different ecological origins showed a high degree of polyclonality. In conclusion, it seems that animal-associated VRE probably reflect the former use of avoparcin in animal production, whereas VRE in human-associated samples may be a result of antibiotic use in hospitals. Since there seems to be a reservoir of the resistance genes in all countries studied, precautions must be taken to limit the use of antibiotics and antibiotic-like feed additives.  相似文献   

6.
High prevalence of vancomycin-resistant enterococci in Swedish sewage   总被引:3,自引:0,他引:3  
In Europe the use of the growth promoter avoparcin is considered to have selected for vancomycin-resistant enterococci (VRE). Sweden ceased using avoparcin in 1986, and only occasional cases of VRE from hospitals have been reported since 1995. Within the framework of a European study, samples from urban raw sewage, treated sewage, surface water, and hospital sewage in Sweden (n = 118) were screened for VRE. Surprisingly, VRE were isolated from 21 of 35 untreated sewage samples (60%), from 5 of 14 hospital sewage samples (36%), from 6 of 32 treated sewage samples (19%), and from 1 of 37 surface water samples. Thirty-five isolates from 33 samples were further characterized by geno- and phenotyping, MIC determination, and PCR analysis. Most isolates (30 of 35) carried the vanA gene, and the majority (24 of 35) of the isolates were Enterococcus faecium. Most of the VRE were multiresistant. The typing revealed high diversity of the isolates. However, one major cluster with seven identical or similar isolates was found. These isolates came from three different sewage treatment plants and were collected at different occasions during 1 year. All VRE from hospital sewage originated from one of the two hospitals studied. That hospital also had vancomycin consumption that was 10-fold that of the other. We conclude that VRE were commonly found in sewage samples in Sweden. The origin might be both healthy individuals and individuals in hospitals. Possibly, antimicrobial drugs or chemicals released into the sewage system may sustain VRE in the system.  相似文献   

7.
In Europe the use of the growth promoter avoparcin is considered to have selected for vancomycin-resistant enterococci (VRE). Sweden ceased using avoparcin in 1986, and only occasional cases of VRE from hospitals have been reported since 1995. Within the framework of a European study, samples from urban raw sewage, treated sewage, surface water, and hospital sewage in Sweden (n = 118) were screened for VRE. Surprisingly, VRE were isolated from 21 of 35 untreated sewage samples (60%), from 5 of 14 hospital sewage samples (36%), from 6 of 32 treated sewage samples (19%), and from 1 of 37 surface water samples. Thirty-five isolates from 33 samples were further characterized by geno- and phenotyping, MIC determination, and PCR analysis. Most isolates (30 of 35) carried the vanA gene, and the majority (24 of 35) of the isolates were Enterococcus faecium. Most of the VRE were multiresistant. The typing revealed high diversity of the isolates. However, one major cluster with seven identical or similar isolates was found. These isolates came from three different sewage treatment plants and were collected at different occasions during 1 year. All VRE from hospital sewage originated from one of the two hospitals studied. That hospital also had vancomycin consumption that was 10-fold that of the other. We conclude that VRE were commonly found in sewage samples in Sweden. The origin might be both healthy individuals and individuals in hospitals. Possibly, antimicrobial drugs or chemicals released into the sewage system may sustain VRE in the system.  相似文献   

8.
Fecal samples from humans and food-producing animals were analyzed for the presence of vancomycin-resistant enterococci (VRE). The VRE carriage rate in humans was 6%, and there was a predominance of VanC-type resistance. Enterococcus faecium with vanA-mediated resistance was frequent in broiler chickens (42%) but rare in cattle and pig samples.  相似文献   

9.
Vancomycin resistant enterococci (VRE) isolates from humans (23 isolates) and poultry (20 isolates) were characterized by antibiotic susceptibility, vancomycin resistance transferability, pulsed-field gel electrophoresis (PFGE), and structural analysis of Tn1546-like elements. VRE isolates from humans and poultry showed different resistance patterns, transferability, and transfer rate. In addition to these phenotypic differences between humans and poultry VRE, PFGE and the structure of Tn1546-like elements were also distinct. Most poultry isolates (16/20) were identical to the prototype vanA transposon, Tn1546, while most human isolates (21/23) had multiple integrations of insertion sequence. The transmission of VRE and vancomycin resistance determinant between humans and poultry could not be demonstrated in this study.  相似文献   

10.
Fecal samples from humans and food-producing animals were analyzed for the presence of vancomycin-resistant enterococci (VRE). The VRE carriage rate in humans was 6%, and there was a predominance of VanC-type resistance. Enterococcus faecium with vanA-mediated resistance was frequent in broiler chickens (42%) but rare in cattle and pig samples.  相似文献   

11.
Vancomycin-resistant enterococci (VRE) were detected in samples of sewage obtained downstream of hospitals of the Porto area in Portugal, and in samples from the Douro Estuary. Clonal analysis, Tn1546 typing, and presence of putative virulence traits indicate the clinical origin of these isolates. This observation highlights the importance of hospital sewage in the VRE contamination of the environment.  相似文献   

12.
Vancomycin-resistant enterococci (VRE) were detected in samples of sewage obtained downstream of hospitals of the Porto area in Portugal, and in samples from the Douro Estuary. Clonal analysis, Tn1546 typing, and presence of putative virulence traits indicate the clinical origin of these isolates. This observation highlights the importance of hospital sewage in the VRE contamination of the environment.  相似文献   

13.
An ampicillin- and ciprofloxacin-resistant Enterococcus faecium (ARE) strain, named FMSE1, with a characteristic biochemical phenotype, was in a recent study found to dominate among faecal ARE isolates from patients in several Swedish hospitals. In the present study, the prevalence of this strain among 9676 enterococcal isolates from healthy children, hospital sewage, urban sewage, surface water, slaughtered animals (broilers, pigs and cattle) and pig faeces and manure was investigated. Enterococcal isolates having the same biochemical phenotype as the FMSE1 were most common in samples of hospital sewage (50%), surface water (35%), treated sewage (28%) and untreated sewage (17%), but rare in samples from healthy children (0.8%) and animals (2%). PFGE typing of FMSE1-like isolates from hospital sewage indicated that they were closely related to the nosocomial FMSE1 strain. Thus, this study indicated a possible transmission route for nosocomial E. faecium from patients in hospitals to hospital sewage and urban sewage, and further via treatment plants to surface water and possibly back to humans. This proposed route of circulation of drug-resistant enterococci might be further amplified by antibiotic usage in human medicine. In contrast, such transmission from food animals seems to play a negligible role in Sweden.  相似文献   

14.
Avoparcin was used as a feed additive in Norwegian broiler and turkey production from 1986 until 1995. It was banned due to the selection of VanA-type vancomycin-resistant enterococci (VRE) in animal husbandry and to reduce the potential for human exposure to VRE. The aim of the present study was to investigate the prevalence of VRE carriage in Norwegian poultry farmers and their poultry three years after avoparcin was banned. Corresponding faecal samples from poultry and humans on farms where avoparcin had previously been used (exposed farms, n = 73) and farms where avoparcin had never been used (unexposed farms, n = 74) were analysed for the presence of VRE. For each farm, one sample from the poultry house and one sample from the farmer were obtained. VRE were isolated from 72 of 73 (99%) and eight of 74 (11%) poultry samples from exposed and unexposed farms, respectively. VRE were isolated from 13 of 73 (18%) and one of 74 (1%) farmer samples from exposed and unexposed farms, respectively. All VRE isolates were highly resistant to vancomycin and possessed the vanA gene, as shown by PCR. The high prevalence of VRE is in accordance with previous Norwegian studies, and shows a remarkable stability of the VanA resistance determinant in an apparently non-selective environment.  相似文献   

15.
Vancomycin-resistant enterococci (VRE) poses a formidable challenge to public health due to its inherent resistance to multiple antibiotics coupled with the ability to transfer genetic determinants to dangerous pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to investigate the incidence of vancomycin resistance in enterococci among clinical isolates at a tertiary care military hospital in the eastern region of Saudi Arabia and to detect van genes using multiplex-PCR. Overall, 246 isolates of enterococci were collected from various clinical specimens. The isolates were identified, and antimicrobial susceptibility testing was done using the Vitek 2 system. Multiplex PCR was performed on the VRE isolates, thus identified to determine the van genes harbored. A total of 15 VRE were identified, of which 14 (93.3%) were Enterococcus faecium, and 1(6.7%) was Enterococcus casseliflavus with intrinsic vanC resistance. Of the 14 vancomycin-resistant Enterococcus faecium, 8 (57.1%) harbored vanB genes, while 6 (42.8%) harbored vanA genes. All the VRE were susceptible to linezolid and tigecycline. Our study detected a low prevalence (6.1%) of VRE among clinical isolates of enterococci and that the vanB gene predominates in such strains. Susceptibility profiles indicated that linezolid and tigecycline are still effective against these multidrug-resistant pathogens. Pus specimens yielded the highest percentage (53.3%) of isolates from which VRE was obtained, and this finding is novel among studies done in Saudi Arabia.  相似文献   

16.
Aims:  In this study we analysed urban, hospital wastewater and pig faeces samples to investigate the presence of vancomycin-resistant Enterococcus faecium strains (VREF) and to determine potential links among the strains originating from the above sources and VREF strains causing clinical infections.
Methods and Results:  Urban, hospital wastewater and pig faeces exhibited high VREF prevalence of 52%, 87% and 85%, respectively. Pulsed field gel electrophoresis (PFGE) clustering of VREF genotypes as well as discriminant analysis of antibiotic resistance patterns of VREF strains revealed their source specificity while strains isolated from hospitalized humans were genetically distinct.
Conclusions:  PFGE genotypes and antimicrobial resistance patterns in VREF isolates are distinguishable by each sample origin. The observed high genetic diversity of VREF suggests horizontal transfer of genetic elements among VREF. Phenotypic and genotypic data indicate that VREF isolates of hospital-treated wastewater might pass to the urban wastewater system.
Significance and Impact of the Study:  This study provides information to understand the origin and the mechanism of circulation of vancomycin resistance in food animals and wastewater treatment plants for minimizing the risk of transmission of VRE in human population.  相似文献   

17.
The occurrence and diversity of vancomycin-resistant enterococci (VRE) in wastewaters from the Brighton and Hove area of south-east England were investigated. VRE were recovered from 71% of raw urban wastewater samples, 22% of treated urban wastewater samples, 15% of hospital wastewater sample and 33% of farm wastewater samples. Two hundred and eighty-eight isolates were typed and identified and the minimum inhibitory concentrations (MICs) to six antibiotics were determined for selected VRE. Vancomycin-resistant Enterococcus faecium (VREF) strains with a vancomycin MIC of more than 32 μg ml−1 were examined by polymerase chain reaction for the vanA , vanB and esp genes. Twenty-three VREF with the vanA or vanB gene were further analysed by multilocus sequence typing which revealed that a cluster of VREF from both hospital and urban wastewaters belonged to the high-risk, epidemic, clonal complex-17 (CC17). Vancomycin-resistant Enterococcus faecium belonging to the CC17 group contained the purK-1 allele, were resistant to ampicillin and frequently ciprofloxacin, and usually contained the esp gene. To the authors' knowledge, this is the first report of CC17 strains isolated from urban wastewaters in the UK, and indicates that certain clones carrying antibiotic resistance or virulence traits indicative of the hospital environment can be detected in the urban wastewater system.  相似文献   

18.
We investigated the prevalence of vancomycin-resistant enterococci (VRE) isolated from wastewater (n = 593) and clinical (n = 450) samples, and the genetic linkage between the isolates was compared. Out of the total samples, 38 Enterococcus faecium (3.6%) from sewage (n = 19) and clinical (n = 19) isolates were found to be highly resistant to vancomycin. The majority of the VRE isolates from the two sources showed distinct phenotyping and genotyping patterns. At the same time, one common pulsed-field gel electrophoresis pattern was found among the VRE obtained from wastewater and human clinical isolates, suggestive of an epidemiological link.  相似文献   

19.
The occurrence, structure, and mobility of Tn1546-like elements were studied in environmental vancomycin-resistant enterococci (VRE) isolated from municipal sewage, activated sludge, pharmaceutical waste derived from antibiotic production, seawater, blue mussels, and soil. Of 200 presumptive VRE isolates tested, 71 (35%) harbored vanA. Pulsed-field gel electrophoresis analysis allowed the detection of 26 subtypes, which were identified as Enterococcus faecium (n = 13), E. casseliflavus (n = 6), E. mundtii (n = 3), E. faecalis (n = 3), and E. durans (n = 1) by phenotypic tests and 16S ribosomal DNA sequencing. Long PCR-restriction fragment length polymorphism (L-PCR-RFLP) analysis of Tn1546-like elements and PCR analysis of internal regions revealed the presence of seven groups among the 29 strains studied. The most common group (group 1) corresponded to the structure of Tn1546 in the prototype strain E. faecium BM4147. Two novel L-PCR-RFLP patterns (groups 3 and 4) were found for E. casseliflavus strains. Indistinguishable Tn1546-like elements occurred in VRE strains belonging to different species or originating from different sources. Interspecies plasmid-mediated transfer of vancomycin resistance to E. faecium BM4105 was demonstrated for E. faecalis, E. mundtii, and E. durans. This study indicates that VRE, including species other than E. faecium and E. faecalis, are widespread in nature and in environments that are not exposed to vancomycin selection and not heavily contaminated with feces, such as seawater, blue mussels, and nonagricultural soil. Tn1546-like elements can readily transfer between enterococci of different species and ecological origins, therefore raising questions about the origin of these transposable elements and their possible transfer between environmental and clinical settings.  相似文献   

20.
Aims: The species identification and antimicrobial resistance profiles were determined for enterococci isolated from Southern California surface and ocean waters. Methods and Results: Species identification was determined for 1413 presumptive Enterococcus isolates from urban runoff, bay, ocean and sewage water samples. The most frequently isolated species were Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus mundtii. All five of these species were isolated from ocean and bay water with a frequency ranging from 7% to 36%. Enterococcus casseliflavus was the most frequently isolated species in urban runoff making up 36–65% of isolates while E. faecium was the most frequently isolated species in sewage making up 53–78% of isolates. The similar distribution of species in urban runoff and receiving water suggests that urban runoff may be the source of Enterococcus. No vancomycin or high level gentamycin resistance was detected in E. faecalis and E. faecium isolates. Conclusions: Enterococcus faecalis, E. faecium, E. casseliflavus and E. mundtii are the most commonly isolated Enterococcus species from urban runoff and receiving waters in Southern California. Significance and Impact of the Study: Determination of the Enterococcus species isolated from receiving waters and potential pollution sources may assist in determining the sources of pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号