首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
Although tree growth in southern African savannas is correlated with rainfall in the wet season, some studies have shown that tree growth is controlled more by rainfall in the dry season. If more rainfall occurred in the dry season in future climates, it would affect the growth of savanna trees, especially saplings that have shallower roots which limit access to subsoil water during the dry season when leaf flush and shoot extension occur. Recent paleobotanical evidence has revealed that there was relatively more precipitation in the dry season in eastern Africa in the Eocene than under the current climate. Saplings therefore can be expected to respond more to water addition during the dry season than mature trees that have more stored water and deeper roots that access subsoil water. Accordingly, I hypothesized that irrigation in the dry season should (i) advance the onset of the growing season, (ii) increase growth rates and (iii) alter the growth responses of saplings to climate factors. To test these hypotheses saplings of five savanna woody species were irrigated during the hot‐dry season at a site in central Zambia and their monthly and annual growth rates compared to those of conspecifics growing under control conditions. Although the responses among the species were variable, all irrigated saplings had significantly higher monthly and annual growth rates than control plants. In addition, dry season watering significantly altered the climatic determinants of sapling growth by either strengthening the role of the same climatic factors that were important under control conditions or displacing them altogether. In conclusion, more precipitation during the hot‐dry season is likely to have significant positive effects on sapling growth and consequently reduce the sapling‐tree transition periods and promote future tree population recruitment in some southern African savanna tree species.  相似文献   

2.
Aim At a regional scale, across southern Africa, woody thickening of savannas is becoming increasingly widespread. Using coupled vegetation and faunal responses (ants), we explore whether major changes in woody cover in savannas represent an increase in the density of savanna trees (C4 grass layer remains intact) or a ‘regime shift’ in system state from savanna to thicket (=dry forest) where broad‐leaved, forest‐associated trees shade out C4 grasses. Location Hluhluwe Game Reserve, South Africa. Methods We sampled paired open (low woody cover) and closed (high cover that have undergone an increase in tree density) sites. Vegetation was sampled using belt transects, and a combination of pitfall trapping and Winkler sampling was used for ants. Results Closed habitats did not simply contain a higher density of woody savanna species, but differed significantly in structure, functional composition (high prevalence of broad‐leaved trees, discontinuous C4 grasses) and system properties (e.g. low flammability). Ant assemblage composition reflected this difference in habitat. The trophic structure of ant assemblages in the two habitats revealed a functional shift with much higher abundances of predatory species in the closed habitat. Main conclusions The predominance of species with forest‐associated traits and concomitant reduction of C4 grasses in closed sites indicate that vegetation has undergone a shift in fundamental system state (to thicket), rather than simply savanna thickening. This biome shift has cascading functional consequences and implications for biodiversity conservation. The potential loss of many specialist savanna plant species is especially concerning, given the spatial extent and speed of this vegetation switch. Although it is not clear how easily the habitat switch can be reversed and how stable the thicket habitats are, it is likely in the not‐too‐distant future that conservation managers will be forced to make decisions on whether to actively maintain savannas.  相似文献   

3.
Ramírez  Nelson 《Plant Ecology》2004,173(2):171-189
Pollination modes ecology of a total of 164 plant species was evaluated according to habitats and plant life forms in the Venezuelan Central Plain. Frequency distribution of nine pollination modes showed that, at the community level bee pollination (38.6%) was dominant. Butterfly (13.9%), fly (12.7%), and wasp (10.8%) pollination were the second most frequent. Moth (6.2%) and wind (10.4%) pollination occurred with similar frequency, and the least common were bird (3.1%), beetle (2.3%) and bat (1.9%) pollination. There was a significant interaction effect indicating that pollination mode was affected by the type of habitat. Bee pollination was the most common pollination mode in all habitats with butterfly, fly and wasp pollination being secondary for forest and forest-savanna transition; and butterfly, wasp, wind and fly pollination being secondary for savanna. Wind, butterfly and fly pollination were found in disturbed areas as secondary pollination modes. Pollination modes were significantly associated and affected by life forms. Bee pollination was dominant in all life forms with wasp, butterfly and fly pollination being the secondary for trees, shrubs, and lianas; and butterfly and wind pollination being the secondary for herbaceous species. The number of pollination modes (richness) among life forms ranged between four and nine for epiphytes and perennial herbs respectively. The highest values of diversity indexes among life forms were found in trees and shrubs. The richness and diversity indices of pollination modes were statistically higher for more structured habitats, forest and forest-savanna transition, than herbaceous habitats, savanna and disturbed areas, which is associated with the highest values of diversity indexes in trees and shrubs. Equitability was higher for forest and disturbed areas than forest-savanna transition and savanna. The results of comparative richness, equitability, diversity indices, and the frequency distribution of pollination modes of 19 samples from tropical and temperate communities indicated that richness of pollination modes may be different between tropical and temperate communities. The proportion of each pollination mode suggests four grouping: (1) rain forests and their strata, (2) grassland savanna, and associated disturbed areas, (3) temperate communities, and (4) the most heterogeneous group, contained mostly neotropical communities, including the four habitats of the Venezuelan Central Plain. The frequency of pollination modes, richness, diversity and equitability of communities, habitats, successional stages, and vegetation strata varies with respect to geography, vegetation structure, and plant species richness.  相似文献   

4.
Nitrogen (N) fixing trees including many species of Acacia are an important though variable component of savanna ecosystems. It is known that these trees enrich the soil with carbon (C) and N, but their effect on the combined C:N:P stoichiometry in soil is less well understood. Theory suggests that they might reduce available phosphorus (P), creating a shift from more N-limited conditions in grass-dominated to more P-limited conditions in tree-dominated sites, which in turn could feed back negatively on the trees’ capacity to fix N. We studied the effects of Acacia zanzibarica tree density upon soil and foliar N:P stoichiometry, and the N2-fixation rates of trees and leguminous herbs in a humid Tanzanian savanna. Foliar N:P ratios and N2-fixation rates of trees remained constant across the density gradient, whereas soil C, N and organic P pools increased. In contrast, the N:P ratio of grasses increased and N2-fixation rates of leguminous herbs decreased with increasing tree density, indicating a shift towards more P-limited conditions for the understory vegetation. These contrasting responses suggest that trees and grasses have access to different sources of N and P, with trees being able to access P from deeper soil layers and perhaps also utilizing organic forms more efficiently.  相似文献   

5.
Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients.  相似文献   

6.
Aim To deepen understanding of the factors that influenced the formation of oak savanna in central Kentucky, USA. Particular attention was focused on the link between historical disturbance and the formation of savanna ecosystem structure. Location Central Kentucky, USA. Methods We used dendrochronological analysis of tree‐ring samples to understand the historical growth environment of remnant savanna stems. We used release detection and branch‐establishment dates to evaluate changes in tree growth and the establishment of savanna physiognomy. We contrasted our growth chronology with reference chronologies for regional tree growth, climate and human population dynamics. Results Trees growing in Kentucky Inner Bluegrass Region (IBR) savanna remnants exhibited a period of suppression, extending from the establishment date of the tree to release events that occurred c. 1800. This release resulted in a tripling of the annual radial growth rate from levels typical of oaks suppressed under a forest canopy (< 1 mm year?1) to levels typical of open‐grown stems (3 mm year?1). The growth releases in savanna trees coincided with low branch establishment. Over the release period, climatic conditions remained relatively constant and growth in regional forest trees was even; however, the growth increase in savanna stems was strongly correlated with a marked increase in Euro‐American population density in the region. Main conclusions Our data suggest that trees growing in savanna remnants originated in the understorey of a closed canopy forest. We hypothesize that Euro‐American land clearing to create pasturelands released these trees from light competition and resulted in the savanna physiognomy that is apparent in remnant stands in the IBR. Although our data suggest that savanna trees originated in a forest understorey, this system structure itself may have been a result of an unprecedented lack of Native American activity in the region due to population loss associated with pandemics brought to North America by Euro‐Americans. We present a hypothetical model that links human population dynamics, land‐use activities and ecosystem structure. Our model focuses on the following three land‐use eras: Native American habitation/utilization; land abandonment; and Euro‐American land clearance. Ecological understanding of historical dynamics in other ecosystems of eastern North America may be enhanced through recognition of these eras.  相似文献   

7.
Question: Can satellite time series be used to identify tree and grass green‐up dates in a semi‐arid savanna system, and are there predictable environmental cues for green‐up for each life form? Location: Acacia nigrescens /Combretum apiculatum savanna, Kruger National Park, South Africa (25° S, 31° E). Methods: Remotely‐sensed data from the MODIS sensor were used to provide a five year record of greenness (NDVI) between 2000 and 2005. The seasonal and inter‐annual patterns of leaf display of trees and grasses were described, using additional ecological information to separate the greening signal of each life form from the satellite time series. Linking this data to daily meteorological and soil moisture data allowed the cues responsible for leaf flush in trees and grasses to be identified and a predictive model of savanna leaf‐out was developed. This was tested on a 22‐year NDVI dataset from the Advanced Very High Resolution Radiometer. A day length cue for tree green‐up predicted 86% of the green‐ups with an accuracy better than one month. A soil moisture and day length cue for grass green‐up predicted 73% of the green‐ups with an accuracy better than a month, and 82% within 45 days. This accuracy could be improved if the temporal resolution of the satellite data was shortened from the current two weeks. Conclusions: The data show that at a landscape scale savanna trees have a less variable phenological cycle (within and between years) than grasses. Realistic biophysical models of savanna systems need to take this into account. Using climatic data to predict these dynamics is a feasible approach.  相似文献   

8.
Savannas are characterized by the coexistence of trees and flammable grasses. Yet, tree–grass coexistence has been labeled as paradoxical—how do these two functional groups coexist over such an extensive area, despite being generally predisposed to excluding each other? For instance, many trees develop dense canopies that limit grass growth, and many grasses facilitate frequent/intense fires, increasing tree mortality. This study revisits tree–grass coexistence with a model of hierarchical competition between pyrogenic grasses, “forest trees” adapted to closed-canopy competition, and “savanna trees” that are inferior competitors in closed-canopy communities, but more resistant to fire. The assumptions of this model are supported by empirical observations, including a systematic review of savanna and forest tree community composition reported here. In general, the model simulations show that when savanna trees exert weaker competitive effects on grasses, a self-reinforcing grass community is maintained, which limits forest tree expansion while still allowing savanna trees to persist (albeit as a subdominant to grasses). When savanna trees exert strong competitive effects on grasses, savanna trees cover increases initially, but as grasses decline their inhibitory effect on forest trees weakens, allowing forest trees to expand and exclude grasses and savanna trees. Rather than paradoxical, these results suggest that having weaker competitive effects on grasses may be advantageous for savanna trees, leading to greater long-term abundance and stability. We label this the “enemy of my enemy hypothesis,” which might apply to species coexistence in communities defined by hierarchical competition or with species capable of generating strong ecological feedbacks.  相似文献   

9.
Savannas are commonly described as a vegetation type with a grass layer interspersed with a discontinuous tree or shrub layer. On the contrary, forbs, a plant life form that can include any nongraminoid herbaceous vascular plant, are poorly represented in definitions of savannas worldwide. While forbs have been acknowledged as a diverse component of the herbaceous layer in savanna ecosystems and valued for the ecosystem services and functions they provide, they have not been the primary focus in most savanna vegetation studies. We performed a systematic review of scientific literature to establish the extent to which forbs are implicitly or explicitly considered as a discrete vegetation component in savanna research. The overall aims were to summarize knowledge on forb ecology, identify knowledge gaps, and derive new perspectives for savanna research and management with a special focus on arid and semiarid ecosystems in Africa. We synthesize and discuss our findings in the context of different overarching research themes: (a) functional organization and spatial patterning, (b) land degradation and range management, (c) conservation and reserve management, (d) resource use and forage patterning, and (e) germination and recruitment. Our results revealed biases in published research with respect to study origin (country coverage in Africa), climate (more semiarid than arid systems), spatial scale (more local than landscape scale), the level at which responses or resource potential was analyzed (primarily plant functional groups rather than species), and the focus on interactions between life forms (rather seldom between forbs and grasses and/or trees). We conclude that the understanding of African savanna community responses to drivers of global environmental change requires knowledge beyond interactions between trees and grasses only and beyond the plant functional group level. Despite multifaceted evidence of our current understanding of forbs in dry savannas, there appear to be knowledge gaps, specifically in linking drivers of environmental change to forb community responses. We therefore propose that more attention be given to forbs as an additional ecologically important plant life form in the conventional tree–grass paradigm of savannas.  相似文献   

10.
Fire regimes are changing throughout the world. Changed fire patterns across northern Australian savannas have been proposed as a factor contributing to recent declines of small‐ and medium‐sized mammals. Despite this, few studies have examined the mechanisms that underpin how species use habitat in fire‐affected landscapes. We determined the habitats and resources important to the declining golden‐backed tree‐rat (Mesembriomys macrurus) in landscapes partially burnt by recent intense fire. We aimed to (i) compare the relative use of rainforest and savanna habitats; (ii) examine the effect of fire history on use of savanna habitats; and (iii) identify key foraging and denning resources. Habitat selection was examined by comparing the availability of eight habitat types around real (used) and generated (available) location points. Individuals used a range of habitats, but consistently selected long unburnt rainforest in preference to recently burnt savanna (1–12 months post‐fire); however, recently burnt savanna was used in preference to long unburnt savanna. Tree‐rats foraged in Terminalia hadleyana, Planchonia rupestris, Celtis philippensis and Owenia vernicosa, tree species that are found in a variety of habitat types. Individuals used a range of den sites, including cliffs, trees, logs, scree and stags found throughout the study area. Although multiple factors may have led to the decline of Mes. macrurus across its range, these results are consistent with the idea that changes in the savanna structure as a consequence of contemporary fire patterns could also have a role. The continued persistence of Mes. macrurus in the northwest Kimberley may be supported by land management strategies that conserve fruiting and hollow‐bearing trees, and maintain the availability of fire‐sensitive vegetation types.  相似文献   

11.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

12.
We surveyed the macrofungi of an area dominated by northern Guinea savanna habitats in north‐east Nigeria. A total of 93 different species of mushrooms were found in the study area. These species belong to 29 different families, most species belonging to the family Agaricaceae, Lyophyllaceae, Bolbitiaceae, Pluteaceae and Polyporaceae. A total of 48 species belonged to the Agaricaceae, followed by Lyophyllaceae represented by 6 species. The micro‐habitats of mushrooms in the study area include wood, soil around dead tree stump, waste dump, cow dung, fallow, arable land, and 22 different living trees species. The most important habitats in term of mushroom species diversity were Parkia biglobosa, Tamarindus indica and dead wood. The Parkia biglobosa tree had the highest species richness (45) and species diversity (Shannon diversity index, SDI: 3.6). Tamarindus indica was the second, having 28 species richness and 2.7 SDI. These were followed by dead wood where 22 different mushroom species were recorded and has of 2.1 SDI. Also, these three habitats (Parkia biglobosa, dead wood and Tamarindus indica) had the highest number of mushroom species (14, 8 and 6 respectively) that were confined to them. Most of the other mushroom species were confined to only one microhabitat. There was no statistically significant difference in mushroom abundance between arable land and fallow. Collectively, the indigenous trees were associated by more mushroom species (63) than the exotic trees (20) and the indigenous trees also had significantly higher mushroom abundance than the exotic trees. However, the non‐indegenous trees had more species forming mycorrhiza than the indegenous trees, presumaby because the former were able to form symbioses with both native fungi and introduced species from their origina habitats. Inter‐annual variation of mushroom species diversity was also observed. Human activities contribute positively to mushroom diversity in the study area by creating some unique micro‐habitats that support the growth of certain unique mushroom species. Therefore, for maximum conservation of mushroom diversity, conservation measures excuding all human activities should be avoided.  相似文献   

13.
Abstract Analysis of foliar nutrient concentrations revealed that two mesophyllic monsoon rainforest trees had higher concentrations of most nutrients in leaves than eight savanna species. One of the tested monsoon rainforest species with sclerophyllous leaves had similar nutrient concentrations to the savanna tree species. There were positive or no significant correlations between live foliar nutrient concentration and the percentage of nutrients withdrawn prior to litterfall. The nutrient concentration of litter was similar for most nutrients among tree species of monsoon rainforest or savanna. The results of this study suggest that the relative fertility of surface soils of monsoon rainforest compared with savanna is not determined by contrasting nutrient cycling strategies whereby monsoon rainforest tree species enrich their soils with relatively nutrient rich leaf litter relative to savanna tree species.  相似文献   

14.
Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna.  相似文献   

15.
A new method is presented for assessment of compositional changes in disturbed savanna systems and for identification of species susceptible to local extinction. Such information is urgently needed as a basis for management plans that aim at ensuring conservation and sustainable use of savanna vegetation. Size class distributions (SCDs) of trees and shrubs from a fire-disturbed savanna in Senegal are analysed and compared to observations provided by local people on declining species. Many species, particularly large trees, have few young individuals and therefore flat SCDs that deviate from the reverse-J shape SCD characterizing species with abundant and constant rejuvenation. Based on comparisons of SCDs with local information and historical records, it is concluded that most of the flat distributions analysed are effects of declining population sizes caused by human impact, particularly fire. Results from the analyses certify that a change in species composition from a vegetation characterized by large trees to one dominated by shrubs takes place. Whereas most of the declining species are locally appreciated, this is not the case for the few species with good rejuvenation. Therefore, if the observed trend continues, it will have severe implications for the local communities.  相似文献   

16.
Elephant and fire are considered to be among the most important agents that can modify the African savanna ecosystem. Although the synergistic relationship between these two key ecological drivers is well documented, it has proved much more difficult to establish the relative effects they have on savanna vegetation structure at a fine-scale over time. In this study, we explore the comparative impacts of fire and elephant on 2,522 individually identified large trees (≥5 m in height) in the Kruger National Park, South Africa. Data were collected from 21 transects first surveyed in April 2006 and resurveyed in November 2008, to determine the relative importance of past damage by these agents on subsequent impacts and mortality. The occurrence of fire or elephant damage in 2006 affected the amount of tree volume subsequently removed by both these agents; elephant removed more tree volume from previously burned trees and the impact of subsequent fire was higher on previously burned or elephant-utilized trees than on undamaged trees. Mortality was also affected by an interaction between previous and recent damage, as the probability of mortality was highest for trees that suffered from fire or elephant utilization after being pushed over. Subsequent fire damage, but not elephant utilization, on debarked trees also increased the probability of mortality. Mortality was twice (4.6% per annum) that of trees progressing into the ≥5 m height class, suggesting an overall decline in large tree density during the 30-month study period. The responses of large trees were species and landscape-specific in terms of sensitivity to elephant and fire impacts, as well as for levels of mortality and progression into the ≥5 m height class. These results emphasize the need for fine-scale site-specific knowledge for effective landscape level understanding of savanna dynamics.  相似文献   

17.
The physical characteristics of habitats shape local community structure; a classic example is the positive relationship between the size of insular habitats and species richness. Despite the high density and proximity of tree crowns in forests, trees are insular habitats for some taxa. Specifically, crown isolation (i.e. crown shyness) prevents the movement of small cursorial animals among trees. Here, we tested the hypothesis that the species richness of ants (Sa) in individual, isolated trees embedded within tropical forest canopies increases with tree size. We predicted that this pattern disappears when trees are connected by lianas (woody vines) or when strong interactions among ant species determine tree occupancy. We surveyed the resident ants of 213 tree crowns in lowland tropical forest of Panama. On average, 9.2 (range = 2–20) ant species occupied a single tree crown. Average (± SE) Sa was ca 25% higher in trees with lianas (10.2 ± 0.26) than trees lacking lianas (8.0 ± 0.51). Sa increased with tree size in liana‐free trees (Sa = 10.99A0.256), but not in trees with lianas. Ant species composition also differed between trees with and without lianas. Specifically, ant species with solitary foragers occurred more frequently in trees with lianas. The mosaic‐like pattern of species co‐occurrence observed in other arboreal ant communities was not found in this forest. Collectively, the results of this study indicate that lianas play an important role in shaping the local community structure of arboreal ants by overcoming the insular nature of tree crowns.  相似文献   

18.
As with many grasslands globally, the Highveld grasslands of South Africa are tree-less, despite having a climate that can support tree growth. Models predict that fire maintains these grasslands. The question arises as to why fire-tolerant savanna trees do not survive in these ecosystems? Savanna tree survival in mesic areas is restricted by demographic bottlenecks, specifically limitations to sapling-escape from fire. It was hypothesised that ancient highly leached soils from grassland areas would prevent saplings from growing fast enough to escape the fire-trap. Growth rates of savanna tree seedlings (Acacia karroo Hayne and Acacia sieberiana Burtt Davy) were measured in a common garden experiment using soils from ten sites collected along a savanna-grassland continuum. Soils from grassland sites were relatively nutrient-poor compared to those from savannas with lower pH, and associated cations. A. sieberiana growth rates responded to pH and these nutrients, whereas A. karroo growth was less strongly linked to specific nutrients. Even so, both species accumulated more biomass when grown in soils from savanna sites compared to grassland sites. An exception was a low elevation low nutrient savanna site that resulted in poor growth, yet sustains high tree biomass in situ. Differences between growth in grassland and savanna soils were small. They may contribute to, but are unlikely to explain, the treeless nature of these grasslands.  相似文献   

19.
Volker Nicolai 《Oecologia》1989,80(3):421-430
Summary The thermal properties of 26 African tree species in two different ecosystems were studied using thermocouples. In a subtropical moist forest were three bark types of trees: species with thin and smooth bark types with low values of insulation across the bark; species with a more structured bark type and medium insulation values; and species with deep-fissured or scaly bark types and high insulation values. Only these latter trees are able to survive openings in the subtropical forest and stand alone on edges of forest gaps. In the savanna all tree species showed adaptations in the structure of their bark in different forms: many tree species shade their trunks. Some have low bark insulation and these are known to be sensitive to fires. Some tree species show high bark insulation and do not shade their trunks. Tree species with white bark avoid overheating of their surface by reflection of the radiation. The arthropod community living exclusively on the bark was investigated for the first time on South African trees, on ten tree species. In the two different ecosystems this habitat is occupied by different arthropod groups. In the subtropical forest Acari, Araneae, Opiliones, Isopoda, Myriopoda, Blattodea, Psocoptera, Heteroptera, Coleoptera, Formicidae, and Nematocera (Diptera) are the main arthropod groups living exclusively on the bark of trees. In the savanna Pseudoscorpiones, Araneae, Collembola, Blattodea, Psocoptera, Coleoptera, Neuroptera, Termites, Formicidae, Hymenoptera and Brachycera (Diptera) are the main arthropod groups living exclusively on the bark of trees. Within one ecosystem on one bark type the dominant species are similar; richly structured bark types have a richer fauna. In the forest, bark arthropod diversity is related to the bark structure of the constituent trees, and the arthropod communities on the bark would reflect changes in the structure of the forest. Forests comprising tree species with different bark types would have a richer total bark arthropod fauna. Specialists on richly structured bark types would die out if tree species composition were altered by man to give stands consisting only of tree species with smooth bark types. Bark arthropods in a subtropical moist forest have different proportions of herbivorous and fungivorous compared to carnivorous species than those on the bark of trees in a savanna.  相似文献   

20.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号