首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. C. Brown  B. E. Lemmon 《Protoplasma》1991,161(2-3):168-180
Summary Microsporogenesis inSelaginella was studied by fluorescence light microscopy and transmission electron microscopy. As in other examples of monoplastidic meiosis the plastids are involved in determination of division polarity and organization of microtubules. However, there are important differences: (1) the meiotic spindle develops from a unique prophase microtubule system associated with two plastids rather than from a typical quadripolar microtubule system associated with four plastids; (2) the division axes for first and second meiotic division are established sequentially, whereas as in all other cases the poles of second division are established before those of first division; and (3) the plastids remain in close contact with the nucleus throughout meiotic prophase and provide clues to the early determination of spindle orientation. In early prophase the single plastid divides in the plane of the future division and the two daughter plastids rotate apart until they lie on opposite sides of the nucleus. The procytokinetic plate (PCP) forms in association with the two slender plastids; it consists of two spindle-shaped microtubule arrays focused on the plastid tips with a plate of vesicles at the equatorial region and a picket row of microtubules around one side of the nucleus. Second plastid division occurs just before metaphase and the daughter plastids remain together at the spindle poles during first meiotic division. The meiotic spindle develops from merger of the component arrays of the PCP and additional microtubules emanating from the pair of plastid tips located at the poles. After inframeiotic interphase the plastids migrate to tetrahedral arrangement where they serve as poles of second division.Abbreviations AMS axial microtubule system - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PCP procytokinetic plate - QMS quadripolar microtubule system - TEM transmission electron microscope (microscopy)  相似文献   

2.
Ontogeny of the meiotic spindle in hornworts was studied by light microscopy of live materials, transmission electron microscopy, and indirect immunofluorescence microscopy. As in monoplastidic meiosis of mosses and Isoetes, the single plastid divides twice, and the four resultant plastids migrate into the future spore domains where they organize a quadripolar microtubule system (QMS). Additionally, a unique axial microtubule system (AMS) was found to parallel the plastid isthmus at each division in meiosis, much as in the single plastid division of mitosis. This finding is used to make a novel comparison of mitotic and meiotic spindle development. The AMS contributes directly to development of the mitotic spindle, whereas ontogeny of the meiotic spindle is more complex. Nuclear division in meiosis is delayed until after the second plastid division; the first AMS disappears without spindle formation, and the two AMSs of the second plastid division contribute to development of the QMS. Proliferation of microtubules at each plastid results in the QMS consisting of four cones of microtubules interconnecting the plastids and surrounding the nucleus. The QMS contributes to the development of a functionally bipolar spindle. The meiotic spindle is comparable to a merger of two mitotic spindles. However, the first division spindle does not terminate in what would be the poles of mitosis; instead the poles converge to orient the spindle axis midway between pairs of non-sister plastids.  相似文献   

3.
Summary The process of chloroplast division in young leaves of four species (bean, spinach, wheat, and maize) was investigated by light and electron microscopy. Two types of division, i.e., by fission, and by partition were observed.Chloroplast division by fission prevailed in the plant species examined, as shown by the relative abundance of dumbbell-shaped plastids, the characteristic stage in this type of division. Electron dense material, most commonly in the shape of a ring structure in the isthmus of the dividing plastid, was nearly always present in wheat and maize. Similar, but less distinct structures were usually observed in the neck region of constricted bean and spinach chloroplasts.Chloroplast division by partition was found in young leaf tissues of bean and spinach, but was not observed in wheat and maize. The main indication of this type of division is a centripetal invagination of the inner limiting membrane of the plastid envelope which progressively divides the chloroplast stroma into two, nearly equal, parts. Specific membraneous structures resembling myelin figures were usually found close to a dividing chloroplast and may participate in chloroplastokinesis.  相似文献   

4.
Plastids in heterokonts, cryptophytes, haptophytes, dinoflagellates, chlorarachniophytes, euglenoids, and apicomplexan parasites derive from secondary symbiogenesis. These plastids are surrounded by one or two additional membranes covering the plastid-envelope double membranes. Consequently, nuclear-encoded plastid division proteins have to be targeted into the division site through the additional surrounding membranes. Electron microscopic observations suggest that the additional surrounding membranes are severed by mechanisms distinct from those for the division of the plastid envelope. In heterokonts, cryptophytes and haptophytes, the outermost surrounding membrane (epiplastid rough endoplasmic reticulum, EPrER) is studded with cytoplasmic ribosomes and connected to the rER and the outer nuclear envelope. In monoplastidic species belonging to these three groups, the EPrER and the outer nuclear envelope are directly connected to form a sac enclosing the plastid and the nucleus. This nuclear-plastid connection, referred to as the nucleus-plastid consortium (NPC), may be significant to ensure the transmission of the plastids during cell division. The plastid dividing-ring (PD-ring) is a conserved component of the division machinery for both primary and secondary plastids. Also, homologues of the bacterial cell division protein, FtsZ, may be involved in the division of secondary plastids as well as primary plastids, though in secondary plastids they have not yet been localized to the division site. It remains to be examined whether or not dynamin-like proteins and other protein components known to function in the division of primary plastids are used also in secondary plastids. The nearly completed sequencing of the nuclear genome of the diatom Thalassiosira pseudonana will give impetus to molecular and cell biological studies on the division of secondary plastids.  相似文献   

5.
Summary Studies of monoplastidic mitosis in hornworts (Bryophyta) using transmission electron microscopy and indirect immunofluorescence staining of microtubules have revealed that two mutually perpendicular microtubule systems predict division polarity in preprophase. Events of cytoplasmic reorganization in preparation for division occur in the following order: migration of the single plastid to a position perpendicular to the division site, constriction of the plastid where its midpoint intersects the division site, development of an axial system of microtubules parallel to the elongating plastid isthmus, and appearance of an atypical preprophase band of microtubules (PPB). The PPB is asymmetrical with a tight band of microtubules on the side over the plastid isthmus and a broad band of widely spaced microtubules over the nucleus. The axial system contributes directly to development of the spindle. In prometaphase, the axial system separates at the equator and additional microtubule bundles project from polar regions, creating two opposing halfspindles. The PPB is still present during asymmetrical organization of the spindle and microtubules extending from the broad portion of the PPB to poles appear to be incorporated into the developing spindle. Dynamic changes in the microtubular cytoskeleton demonstrate (1) intimate relationship of plastid and nuclear division, (2) contribution of preprophase/prophase microtubule systems to spindle development in monoplastidic cells, and (3) dynamic reorientation of microtubules from one system to another.  相似文献   

6.
Cyanelles of glaucocystophytes may be the most primitive of the known plastids based on their peptidoglycan content and the sequence phylogeny of cyanelle DNA. In this study, EM observations have been made to characterize the cyanelle division of Cyanophora paradoxa Korshikov and to gain insights into the evolution of plastid division. Constriction of cyanelles involves ingrowth of the septum at the cleavage site with the inner envelope membrane invaginating at the leading edge and the outer envelope membrane invaginating behind the septum. This means the inner and outer envelope membranes do not constrict simultaneously as they do in plastid division in other plants. The septum and the cyanelle envelope became stained after a silver‐methenamine staining was applied for in situ detection of polysaccharides. Septum formation was inhibited by β‐lactams and vancomycin, which are potent inhibitors of bacterial peptidoglycan biosynthesis. These results suggest the presence of peptidoglycan at the septum and the cyanelle envelope. In dividing cyanelles, a single electron‐dense ring (cyanelle ring) was observed on the stromal face of the inner envelope membrane at the isthmus, but no ring‐like structures were detected on the outer envelope membrane. Thus a single, stromal cyanelle ring such as this is quite unique and also distinct from FtsZ rings, which are not detectable by TEM. These features suggest that the cyanelle division of glaucocystophytes represents an intermediate stage between cyanobacterial and plastid division. If monophyly of all plastids is true, the cyanelle ring and the homologous inner plastid dividing ring might have evolved earlier than the outer plastid dividing ring.  相似文献   

7.
R. C. Brown  B. E. Lemmon 《Protoplasma》1989,152(2-3):136-147
Summary The large megasporocytes ofIsoetes provide an exceptional system for studying microtubule dynamics in monoplastidic meiosis where plastid polarity assures coordination of plastid and nuclear division by the intimate association of MTOCs with plastids. Division and migration of the plastid in prophase establishes the tetrahedrally arranged cytoplasmic domains of the future spore tetrad and the four plastid-MTOCs serve as focal points of a unique quadripolar microtubule system (QMS). The QMS is a dynamic structure which functions in plastid deployment and contributes directly to development of both first and second division spindles. The nucleation of microtubules at discrete plastid-MTOCs is compared with centrosomal nucleation of microtubules in animal cells where growth of microtubules involves dynamic instability.Abbreviations AMS axial microtubule system - MTOC microtubule organizing center - N nucleus - QMS quadripolar microtubule system - P plastid - PPB preprophase band of microtubules  相似文献   

8.
D. Menzel 《Protoplasma》1985,125(1-2):103-110
Summary In the dichotomously branched caulerpalean green algaChlorodesmis fastigiata long range cytoplasmic streams run through the siphon and form a network of shorter strands in the region of the bulbous enlargement of the dichotomies. Continuous transport of organelles occurs along these streams, which are contructed of a central bundle of microtubules, around which the organelles are grouped. Both chloroplasts and amyloplasts exhibit a unique dorso-ventral symmetry: their flattened ventral side is closely apposed to the surface of the microtubule bundles. The concentric lamellar system (CLS) at the tip of the plastids invariably points in the direction of movement.These findings are discussed in relation to microtubule based motility. It is suggested that the unique plastid architecture serves as an efficient differentiation facilitating long range transport along the microtubule bundles.  相似文献   

9.
The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular controls underlying plastid division are largely unknown. With the isolation of Arabidopsis mutants in which specific aspects of plastid and proplastid division have been disrupted, the potential exists for a detailed knowledge of how plastids divide and what factors control the rate of division in different cell types. It is likely that knowledge of plant homologues of bacterial cell division genes will be essential for understanding this process in full. The processes of plastid division and expansion appear to be mutually independent processes, which are compensatory when either division or expansion are disrupted genetically. The rate of cell expansion appears to be an important factor in initiating plastid division and several systems involving rapid cell expansion show high levels of plastid division activity. In addition, observation of plastids in different cell types in higher plants shows that cell-specific signals are also important in the overall process in determining not only the differentiation pathway of plastids but also the extent of plastid division. It appears likely that with the exploitation of molecular techniques and mutants, a detailed understanding of the molecular basis of plastid division may soon be a reality.  相似文献   

10.
It has been established that organelles, such as mitochondria and plastids, contain organelle-specific DNA and arise from the division of pre-existing organelles (e.g., Possingham and Lawrence, 1983). We propose that organelle DNAs, such as mitochondrial DNA and plastid DNA are not naked in organellesin situ but are organized in each case to form an “organelle nucleus” with basic proteins (Kuroiwa, 1982). The concept of organelle nuclei has changed our ideas about the division of organelles. Thus, the process of organelle division must be composed of two main events: division of the organelle nucleus and organellekinesis (division of the other components of the mitochondrion or plastid). The latter term has been adopted as an appropriate analogue of cytokinesis. We were the first to identify the plastid-dividing ring (PD-ring), which is located in the cytoplasm close to the outer envelope membrane at the constricted isthmus of dividing chloroplasts in the red algaCyanidium caldirum. The PD-ring is about 60 nm in width and 25 nm in thickness, and is a circular bundle of actin-like, fine filaments, each about 4–5 nm in diameter. Since cytochalasin B, an inhibitor of polymerization of actin filaments, inhibits the formation of the PD-ring and, thus, prevents subsequent division of chloroplasts, the PD-ring is thought to be a structure that is essential for the division of plastids (plastidkinesis). The behavior of the PD-ring during a cycle of chloroplast division can be classified into the following four stages on the basis of morphological and temporal differences. The chloroplast growth stage: the small, spherical chloroplast increases in volume and becomes a football-like structure, while the PD-ring from the previous division disappears. Formation of the PD-ring: the somewhat electron-dense body (see below) is fragmented into many, somewhat electron-dense granules, which are aligned along the equatorial region of the chloroplast and fine filaments are formed from the somewhat electron-dense granules in the equatorial region. The fine filaments of the PD-ring align themselves according to the longest axis of their overall domain, i.e., circumferentially. Contraction stage: a bundle of fine filaments begins to contract and generates a deep furrow. Conversion stage: after chloroplast division, the remnants of the PD-ring are converted into somewhat electron-dense bodies. Similar events occur during the second cycle of chloroplast division. Since similar structures are observed extensively in the plastids of algae, moss and higher plants, the PD-ring appears to be an essential structure for the division of plastids in plants.  相似文献   

11.
Laser scanning confocal microscopy and TEM were used to study the morphology of secondary plastids in algae of the genus Mallomonas (Synurophyceae). At interphase, Mallomonas splendens (G. S. West) Playfair, M. rasilis Dürrschm., M. striata Asmund, and M. adamas K. Harris et W. H. Bradley contained a single H‐shaped plastid consisting of two large lobes connected by a narrow isthmus. Labeling of DNA revealed a necklace‐like arrangement of plastid nucleoids at the periphery of the M. splendens plastid and a less‐patterned array in M. rasilis. The TEM of M. splendens and M. rasilis showed an electron‐dense belt surrounding the plastid isthmus in interphase cells; this putative plastid‐dividing ring (PD ring) was adpressed to the inner pair of the four plastid membranes, suggesting that it is homologous to the PD ring of green and red plastids. The PD ring did not contain actin (indicated by lack of staining with phalloidin) and displayed filaments or tubules of 5–10 nm in diameter that may be homologous to the tubules described in red algal PD rings. Confocal microscopy of chl autofluorescence from M. splendens showed that the plastid isthmus was severed as mitosis began, giving rise to two single‐lobed daughter plastids, which, as mitosis and cell division progressed, separated from one another and then each constricted to form the H‐shaped plastids of daughter cells. Similar plastid division cycles were observed in M. rasilis and M. adamas; however, the plastid isthmus of M. striata was retained throughout most of cell division and was eventually severed by the cell cleavage furrow.  相似文献   

12.
Summary Mitotic cell division of monoplastidic sporogones was investigated in the mossTimmiella barbuloides (Brid.) Moenk. (Pottiales, Bryophyta) by TEM. Division polarity of sporogones is established by the interphase position of the single oblong cup-shaped plastid, which is orientated with its long axis parallel to one of the cell walls. In preprophase the plastid elongates and its extremities bend at right angles. Plastid growth is directed by microtubules and accompanied by plastid tubules. The plastid begins the process of duplication by constricting centrally in the plane of the future cytokinetic septum. There is no preprophase band of microtubules at the division site. The large central nucleus becomes fusiform and aligned parallel to the main plastid axis. By the end of prophase the daughter plastids are positioned at the opposite poles of the nucleus where they probably function as nucleating or organizing centres for the spindle microtubules. Metaphase and anaphase spindles contain long sheets of ER. Cytokinesis involves the formation of a well developed phragmoplast.Abbreviations TEM transmission electron microscopy - PPB preprophase band of microtubules - ER endoplasmic reticulum  相似文献   

13.
The young guard cell of Selaginella inherits a single plastid from the division of the stomatal guard mother cell (GMC). During early stomatal development the single plastid undergoes a complex series of migrations and divisions. The regular pattern of plastid behavior appears to be an expression of the genetic program controlling division plane and cytomorphogenesis. The plastid in the GMC becomes precisely aligned with its midconstriction intersected by the plane of a preprophase band of microtubules (PPB) oriented parallel to the long axis of the leaf. This alignment with respect to the future division plane of the cytoplasm ensures equal plastid distribution to the daughter cells. Cytokinesis occurs in the plane previously marked by the PPB and the plastid in each daughter cell lies between the lateral wall and the newly formed nucleus. Following cytokinesis the plastid in each young guard cell develops a median constriction and migrates to the common ventral wall where the isthmus is associated with a system of microtubules in the vicinity of the developing pore region. Plastid division is completed while the plastid is adjacent to the common ventral wall. Following division, the two daughter plastids move back toward the lateral wall. Each plastid may divide again during guard cell maturation but no further migrations occur.  相似文献   

14.
In many bryophytes and vascular cryptogams mitosis and/or meiosis takes place in cells containing a single plastid. In monoplastidic cell division plastid polarity assures that nuclear and plastid division are infallibly coordinated. The two major components of plastid polarity are morphogenetic plastid migration and microtubule organization at the plastids. Before nuclear division the plastid migrates to a position intersecting the future division plane. This morphogenetic migration is a reliable marker of division polarity in cells with and without a preprophase band of microtubules (PPB). The PPB, which predicts the future division plane before mitosis, is a characteristic feature of land plants and its insertion into the cytokinetic apparatus marks the evolution of a cortical microtubule system and a commitment to meristematic growth. Microtubule systems associated with plastid division, the axial microtubule system (AMS) in mitosis and the quadripolar microtubule system (QMS) in meiosis, contribute to predictive positioning of plastids and participate directly in spindle ontogeny. Division polarity in monoplastidic sporocytes is remarkable in that division sites are selected prior to the two successive nuclear divisions of meiosis. Plastid arrangement prior to meiosis determines the future spore domains in monoplastidic sporocytes, whereas in polyplastidic sporocytes the spore nuclei play a major role in claiming cytoplasmic domains. It is hypothesized that predivision microtubule systems associated with monoplastidic cell division are early forming components of the mitotic apparatus that serve to orient the spindle and insure equal apportionment of nucleus and plastids. “Can it be supposed that cytoplasm would be intrusted with so important a task as the preparation of a chloroplast for each of the four nuclei that are later to preside over the spores before there is any indication that such nuclear division is to take place?” Bradley Moore Davis, 1899  相似文献   

15.
R. C. Brown  B. E. Lemmon 《Protoplasma》1985,127(1-2):101-109
Summary An ultrastructural investigation of the monoplastidic microsporocytes ofSelaginella arenicola revealed a unique cytoskeletal array that predicts the future division plane before nuclear division takes place. By midprophase of the first meiotic division, the single plastid has divided once and the two plastids lie on opposite sides of the nucleus which is elongated in the plane of the incipient metaphase I spindle. A cytoplasmic structure, the procytokinetic plate (PCP), predicts the division plane of of both plastid and cytoplasm. The PCP consists of a distinct concentration of vesicles lying in the future division plane and an elaborate system of microtubules aligned parallel to the long axis of plastids and nucleus. Microtubules of the axially aligned system appear to terminate in clusters of vesicles in the central zone of the PCP. The PCP with axially aligned microtubules is as predictive of the division plane in these meiotic cells as is the girdling preprophase band of microtubules in mitotic cells.  相似文献   

16.
H. Hashimoto 《Protoplasma》1986,135(2-3):166-172
Summary Ultrastructure of the constricting neck of dividing proplastids and young chloroplasts in the first leaves ofAvena sativa was examined by electron microscopy. An electron-dense, double ring structure (plastid-dividing ring doublet; PD ring doublet) with a width of 15–40 nm was revealed around the narrow neck of the constricted and dividing plastids by serial section technique. The inner and outer ring of the doublet coated the inside (stromal side) of the inner envelope membrane and the outside (cytoplasmic side) of the outer envelope membrane, respectively. However, electron-dense materials were not observed within the lumen between the outer and inner envelope membranes.Although the PD ring doublet was commonly observed in the constricted plastids with a 70–140 nm wide neck, they could be scarcely observed in the constricted plastids with a 160 or more nm wide neck. The components of the PD ring were assumed not to be concentrated enough to identify by electron microscopy in the early stage of constriction and the PD ring may be formed and recognized at the final stage.The significance of the formation of the PD ring and its role in plastokinesis (plastid kinesis) were discussed.  相似文献   

17.
This study provides data on cell division in Coleochaete orbicularis, an important taxon in evolutionary theories deriving land plants from green algae. Vegetative growth in discoid species of Coleochaete results from marginal cell division in two planes—radial and circumferential. Like many algae and certain of the simple land plants, Coleochaete is monoplastidic. Prior to mitosis, the single plastid migrates to a position where it will divide and be distributed into the daughter cells. Unlike monoplastidic cell division in hornworts, mosses, and lycopsids; microtubule nucleation is not intimately associated with the plastids. Instead, microtubule organization is associated with centriolar centrosomes throughout the cell cycle, as is common in algae. The cytokinetic apparatus lacks preprophase bands of microtubules, but includes typical phragmoplasts consisting of brushlike arrays of microtubules on either side of a dark zone. However, the origin and role of phragmoplasts is unusual. Phragmoplasts appear to develop among microtubules that emanate from the polar centrosomes rather than from nuclear envelopes and/or plastids. The function of phragmoplasts in Coleochaete is unclear, as the process of cytokinesis is not strictly centrifugal. Some infurrowing occurs in radial division, and cytokinesis appears to be entirely centripetal by infurrowing in circumferential division. The cortical arrays of microtubules differ from those typical of land plants in that they develop as a network in association with centrosomes after mitosis.  相似文献   

18.
Summary. In Lavatera thuringiaca, kariokinesis and simultaneous cytokinesis during the meiotic division of microsporogenesis follow a procedure similar to that which takes place in the majority of members of the class Angiospermae. However, chondriokinesis occurs in a unique way found only in species from the family Malvaceae. Chondriokinesis in such species is well documented, but the relationship between the tubulin cytoskeleton and rearrangement of cell organelles during meiosis in L. thuringiaca has not been precisely defined so far. In this study, the microtubular cytoskeleton was investigated in dividing microsporocytes of L. thuringiaca by immunofluorescence. The meiotic stages and positions of cell organelles were identified by staining with 4′,6-diamidino-2-phenylindole. We observed that, during prophase I and II, changes in microtubular cytoskeleton configurations have unique features, which have not been described for other plant species. At the end of prophase I, organelles (mostly plastids and mitochondria) form a compact envelope around the nucleus, and the subsequent phases of kariokinesis take place within this arrangement. At this point of cell division, microtubules surround the organelle envelope and separate it from the peripheral cytoplasm, which is devoid of plastids and mitochondria. In telophase I, two newly formed nuclei are tightly surrounded by the cell organelle envelopes, and these are separated by the phragmoplast. Later, when the phragmoplast disappears, cell organelles still surround the nuclei but also move a little, starting to occupy the place of the disappearing phragmoplast. After the breakup of tetrads, the radial microtubule system is well developed, and cell organelles can still be observed as a dense envelope around the nuclei. At a very late stage of sporoderm development, the radial microtubule system disappears, and cell organelles become gradually scattered in the cytoplasm of the microspores. Using colchicines, specific inhibitors of microtubule formation, we investigated the relationship between the tubulin cytoskeleton and the distribution of cell organelles. Our analysis demonstrates that impairment of microtubule organization, which constitutes only a single component of the cytoskeleton, is enough to disturb typical chondriokinesis in L. thuringiaca. This indicates that microtubules (independent of microfilaments) are responsible for the reorganization of cell organelles during meiotic division. Correspondence: D. Tchórzewska, Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.  相似文献   

19.
Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.Abbreviations CLSM confocal laser scanning microscopy - EM electron microscopy - GC generative cell - GN generative nucleus - MT microtubule - SC sperm cell - SN sperm nucleus - VN vegetative nucleus  相似文献   

20.
Sporogenesis in the hepatic Marchantia polymorpha L. provides an outstanding example of the pleiomorphic nature of the plant microtubule organizing center (MTOC). Microtubules are nucleated from γ-tubuUn in MTOCs that change form during mitosis and meiosis. Following entry of cells into the reproductive pathway of sporogenesis, successive rounds of mitosis give rise to packets of 4-16 sporocytes. Mitotic spindles are organized at discrete polar organizers (POs), a type of MTOC that is unique to this group of early divergent land plants. An abrupt and radical transformation in microtubule organization occurs when sporocytes enter meiosis: POs are lost and γ-tubulin is closely associated with surfaces of two large elongated plastids that subsequently divide into four. Migration of the four plastid MTOCs into a tetrahedral arrangement establishes the future spore domains and the division polarity of meiosis. As is typical of many bryophytes, cones of microtubules from the four plastid MTOCs initiate a quadripolar microtubule system (QMS) in meiotic prophase. At this point a transformation in the organization of the MTOCs occurs. The γ-tubulin detaches from plastids and forms a diffuse spheroidal pole in each of the spore domains. The plastids, which are no longer MTOCs, continue to divide. The diffuse MTOCs continue to nucleate cones of microtubules during transformation of the QMS to a bipolar spindle. Following meiosis I, γ-tubulin is associated with nuclear envelopes, and the spindles of meiosis II are organized from diffuse MTOCs at the tetrad poles. At simultaneous cytokinesis, radial microtubule systems are organized at nuclear envelope MTOCs in each of the tetrad members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号