首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a novel technique with which to investigate the morphological basis of exocytotic traffic. We have used expression of HRP from cDNA in a variety of cells in combination with peroxidase cytochemistry to outline traffic into and out of the Golgi apparatus at the electron microscopic level with very high sensitivity. A secretory form of the peroxidase (ssHRP) is active from the beginning of the secretory pathway and the activity is efficiently cleared from cells. Investigation of the morphological elements involved in the itinerary of soluble ER proteins using ssHRP tagged with the ER retention motif (ssHRPKDEL) shows that it progresses through the Golgi stack no further than the cis-most element. Traffic between the RER and the Golgi stack as outlined by ssHRPKDEL occurs via vesicular carriers as well as by tubular elements. ssHRP has also been used to investigate the trans side of the Golgi complex, where incubation at reduced temperatures outlines the trans-Golgi network with HRP reaction product. Tracing the endosomal compartment with transferrin receptor in double-labeling experiments with ssHRP fails to show any overlap between these two compartments.  相似文献   

2.
W G Dunphy  R Brands  J E Rothman 《Cell》1985,40(2):463-472
Using monoclonal antibodies and electron microscopy, we have localized N-acetylglucosamine transferase I within the Golgi apparatus. This enzyme initiates the conversion of asparagine-linked oligosaccharides to the complex type. We have found that the enzyme is concentrated in the central (or medial) cisternae of the Golgi stack. Cisternae at the cis and trans ends of the Golgi complex appear to lack this protein. These experiments establish a function for the medial portion of the Golgi and imply that the Golgi is partitioned into at least three biochemically and morphologically distinct cisternal compartments.  相似文献   

3.
4.
V Malhotra  L Orci  B S Glick  M R Block  J E Rothman 《Cell》1988,54(2):221-227
An N-ethylmaleimide-sensitive transport component (NSF) has been purified on the basis of its ability to support transport between Golgi cisternae. We now report that NSF is needed for membrane fusion. Thus, when NSF is withheld from incubations of Golgi stacks with cytosol and ATP, uncoated transport vesicles accumulate. Biochemical experiments confirm this conclusion and reveal that NSF is needed to form the first of two previously described prefusion complexes. NSF, therefore, acts within a cascade in which a vesicle-cisterna complex is matured until it is competent for fusion. We suggest that this reflects the stepwise assembly of a multisubunit "fusion machine" following vesicle attachment.  相似文献   

5.
Summary The transport of horseradish peroxidase (HRP) applied to exposed pial surfaces of the brain was studied in newborn, 4-, 7- and 12-day-old, and adult mice. In the telencephalon the cell bodies of radial glia were found to accumulate the tracer. Labeled cells occurred in the subventricular zone of the lateral ventricle during the first postnatal week; they became gradually restricted to an area around the stria terminalis (ventrolateral ventricular corner) by day 12. At later stages no HRP transport could be traced from the surface of the telencephalon. In the cerebellum, HRP was transported from the surface to the cell bodies of Bergmann glia in all age groups studied including adult animals. It is concluded that radial glia and their derivatives share the capacity of transporting material between various cerebrospinal fluid compartments.  相似文献   

6.
We have developed an in vitro system to study the biochemical events in the fusion of ilimaquinone (IQ) induced vesiculated Golgi membranes (VGMs) into stacks of cisternae. The Golgi complex in intact normal rat kidney cells (NRK) is vesiculated by treatment with IQ. The cells are washed to remove the drug and then permeabilized by a rapid freeze-thaw procedure. VGMs of 60 nm average diameter assemble into stacks of Golgi cisternae by a process that is temperature dependent, requires ATP and a high speed supernatant from cell extract (cytosol), as revealed by immunofluorescence and electron microscopy. The newly assembled stacks are functionally active in vesicular protein transport and contain processing enzymes that carry out Golgi specific modifications of glycoproteins. The fusion of VGMs requires NSF, a protein known to promote fusion of transport vesicles with the target membrane in the exocytic and endocytic pathways. Immunoelectron microscopy using Golgi specific anti-mannosidase II antibody reveals that VGMs undergo sequential changes in their morphology, whereby they first fuse to form larger vesicles of 200-300-nm average diameter which subsequently extend into tubular elements and finally assemble into stacks of cisternae.  相似文献   

7.
Summary Forty amacrine cells in retinae of a cyprinid fish, the roach, were intracellularly labelled with horseradish peroxidase following electrophysiological identification as sustained depolarizing, sustained hyperpolarizing or transient units. Labelled cells were analysed by light microscopy and compared with a catalogue of amacrine cells established in a previous Golgi study on the same species. About 30% of the cell types characterized by the Golgi method were encountered in the present study. When intracellularly labelled cells were differentiated on the basis of their dendritic organization in the plane of the retina, a given electrophysiological response pattern was found to be generated by different morphological types, and vice versa. However, examination of the ramification patterns of the dendrites within the inner plexiform layer (i.e. in the radial dimension of the retina), showed that this morphological parameter of a given amacrine cell could be correlated with its light-evoked response. Several amacrine cell types were found to possess special distal dendrites which arose from the main dendritic branches and extended well over a mm in the retina. Distal dendrites were oriented tangentially with respect to the optic nerve papilla, but did not appear to be involved in any synaptic connectivity. It is concluded that the Golgi-based classification is a valuable tool for identifying intracellularly labelled amacrine cells. However, although the correlation between layering of dendrites in the inner plexiform layer and electrophysiology was generally good, additional physiological parameters would be required to determine whether more extensive parallels exist between structural and functional characteristics of amacrine cells. Alternatively, the considerable morphological diversity of amacrine cells may be of limited physiological significance.A preliminary account of the present findings was presented to the Physiological Society (Djamgoz et al. 1984)  相似文献   

8.
9.
The Golgi complex is composed of at least four distinct compartments, termed the cis-, medial, and trans-Golgi cisternae and the trans-Golgi network (TGN). It has recently been reported that the organization of the Golgi complex is disrupted in cells treated with the fungal metabolite, brefeldin-A. Under these conditions, it was shown that resident enzymes of the cis-, medial, and trans-Golgi return to the ER. We report here that 300-kD mannose 6-phosphate receptors, when pulse-labeled within the ER of brefeldin-A-treated cells, acquired numerous N-linked galactose residues with a half time of approximately 2 h, as measured by their ability to bind to RCA-I lectin affinity columns. In contrast, Limax flavus lectin chromatography revealed that less than 10% of these receptors acquired sialic acid after 8 h in brefeldin-A. Two lines of evidence suggested that proteins within and beyond the TGN did not return to the ER in the presence of brefeldin-A. First, the majority of 300-kD mannose 6-phosphate receptors present in the TGN and endosomes did not return to the ER after up to 6 h in brefeldin-A, as determined by their failure to contact galactosyltransferase that had relocated there. Moreover, although mannose 6-phosphate receptors did not acquire sialic acid when present in the ER of brefeldin-A-treated cells, they were readily sialylated when labeled at the cell surface and transported to the TGN. These experiments indicate that galactosyltransferase, a trans-Golgi enzyme, returns to the endoplasmic reticulum in the presence of brefeldin-A, while the bulk of sialyltransferase, a resident of the TGN, does not. Our findings support the proposal that the TGN is a distinct, fourth compartment of the Golgi apparatus that is insensitive to brefeldin-A.  相似文献   

10.
EMBO J (2012) 31 20, 3976–3990 doi:10.1038/emboj.2012.235; published online August212012In this issue, Malhotra and colleagues use biochemical approaches to identify a new class of secretory cargo carriers (CARTS) that do not contain the larger cargoes, collagen or Vesicular stomatitis virus (VSV)-G glycoprotein. CARTS appear to be basolateral membrane-directed carriers that use myosin for their motility but not for their formation.Protein secretion involves the collection of proteins into transport carriers that form at the exit (or ‘trans'') face of the Golgi apparatus for delivery to the cell surface. Multiple classes of secretory carriers form at the trans Golgi (Anitei and Hoflack, 2011). Some deliver cargo continuously to the cell surface; others release cargo in response to a signal. Regulated and constitutive secretory cargoes traverse the Golgi complex together and are sorted just before their exit. Proteins destined for different domains of the plasma membrane are also packaged into different carriers that bud from the Golgi and are delivered to either the apical or basolateral surface, respectively. Also departing the Golgi are clathrin-coated vesicles that carry newly synthesized lysosomal enzymes to endocytic compartments.Despite the importance of protein secretion, the carriers that transport cargo from the Golgi to the cell surface have not yet been isolated or characterized. When visualized in live cells expressing GFP-tagged cargo, Golgi-to-cell surface carriers appear as variably sized vesicles and tubules of 1–8 μm in length (Hirschberg et al, 1998; Toomre et al, 1999; Polishchuk et al, 2003; Anitei and Hoflack, 2011). Both actin- and microtubule-based motors participate in their formation, along with phosphatidylinositol 4-phosphate that is needed to recruit components that participate in membrane budding and scission.In this issue, Wakana et al (2012) report the identification of transport carriers (CARriers from the trans Golgi network to the cell surface or CARTS) that mediate the Golgi-to-cell surface transport of a select set of cargo proteins. Unexpectedly, the authors report that collagen and VSV-G glycoprotein use a different carrier for their transport to the cell surface; CARTS also use myosin II for motility but not for vesicle scission (see Figure 1).Open in a separate windowFigure 1PAUF and collagen export from the Golgi require protein kinase D, which distinguishes these export events from the transport of proteins to the apical surface. Small cargoes like PAUF use myosin II for vesicle motility after carrier formation; large cargoes like collagen and VSV-G may use myosin for both carrier formation and motility.Wakana et al (2012) first characterize the vesicle formation process by monitoring TGN46. TGN46 is a protein of unknown function that localizes to the trans Golgi at steady state but cycles between the Golgi and the cell surface. Thus, TGN46 should be present in the Golgi and to a lesser extent, in secretory transport vesicles and endocytic and recycling vesicles. The authors use digitonin to permeabilize HeLa cells and monitor vesicle budding that occurs upon addition of ATP and rat liver cytosol. They use differential centrifugation to remove large membranes and identify a population of putative carriers that only sediment upon centrifugation at high speed and form in the presence of ATP and cytosol. TGN46-vesicle formation requires protein kinase D, a kinase needed for secretory carrier formation in cells (Liljedahl et al, 2001). Next, the authors use antibodies that recognize the cytoplasmic domain of TGN46 to immuno-isolate intact vesicles; controls show that the isolated membranes do not represent lysosomes, endosomes or the Golgi itself. Satisfyingly, the isolated vesicles include a secretory cargo: exogenously expressed, signal sequence containing, horseradish peroxidase. This is good evidence that the isolated carriers represent exocytic vesicles.Mass spectrometry was used to identify candidate transport vesicle proteins; low yields precluded the authors from carrying out a rigorous analysis. Nevertheless, pancreatic adenocarcinoma upregulated factor (PAUF or ZG16B) and lysozyme were identified and confirmed as endogenous, soluble cargo proteins, together with synaptotagmin II, Rab6A, Rab8A and myosin II. Expression of a protein kinase D mutant enabled the authors to accumulate PAUF in trans Golgi tubules; in cells, PAUF carriers were distinct from those coated with COPI, COPII and clathrin. By EM, the carriers were round to elongated, 100–250 nm diameter structures. The identification of an endogenous, constitutively secreted protein will be valuable to those studying secretion.Myosin II has been reported to play a role in the formation of vesicles containing VSV-G glycoprotein (cf. Miserey-Lenkei et al, 2010). Wakana et al (2012) showed that PAUF secretion was inhibited in the presence of blebbistatin, a myosin II inhibitor. However, in the presence of blebbistatin, PAUF-containing punctate structures detected by light microscopy were unchanged in total number or distribution, suggesting that CARTS formation is myosin II independent.Many studies of protein secretion have monitored the trafficking of VSV-G glycoprotein (Hirschberg et al, 1998; Toomre et al, 1999; Polishchuk et al, 2003). G protein is convenient and well studied but an important property that is often overlooked is the tendency of viral glycoproteins to form crystalline arrays within the secretory pathway, especially if proteins are accumulated in the trans Golgi by incubation of cells at 20°C (Griffiths et al, 1985). Under these conditions, cryoelectron microscopy has documented the oligomerization of viral glycoproteins. Large protein assemblies like these and like collagen may require modification of the vesicle formation process to accommodate the larger proteins (Malhotra and Erlmann, 2011; Jin et al, 2012). Thus, it was especially interesting that collagen and VSV-G protein are not detected in PAUF-containing vesicles en route to the cell surface. This may explain why PAUF carriers were not dependent upon myosin II (Wakana et al, 2012) while VSV-G carriers were (Miserey-Lenkei et al, 2010)—perhaps the larger carriers of VSV-G and collagen have a greater need for myosin II in their formation.Several models can explain the formation of the two transport vesicle classes detected. A trivial explanation would be that the carriers are distinct because they are destined for different plasma membrane domains—apical versus basolateral. However, only basolateral transport requires protein kinase D (Yeaman et al, 2004) and protein kinase D is important for all the cargoes studied here—suggesting that both carrier types are basolaterally directed. Simply by default, collection of large assemblies into a nascent vesicle may physically exclude soluble PAUF protein. Alternatively, larger cargoes may use a molecularly distinct class of transport carrier. Yet to be identified are the protein constituents that define CARTS—proteins that collect cargoes together with the vesicle targeting and fusion machinery that must be included in all functional, newly formed transport vesicles. Once these markers are identified, it will become possible to distinguish between these two models and to isolate CARTS in larger quantities for full mass spec analysis. For now, the findings confirm the segregation of small and large cargoes into different vesicles that traverse the path from the Golgi to the cell surface and clarify the role of myosin in transporting these vesicles, but not necessarily pinching them off from the trans Golgi.  相似文献   

11.
A central feature of cisternal progression/maturation models for anterograde transport across the Golgi stack is the requirement that the entire population of steady-state residents of this organelle be continuously transported backward to earlier cisternae to avoid loss of these residents as the membrane of the oldest (trans-most) cisterna departs the stack. For this to occur, resident proteins must be packaged into retrograde-directed transport vesicles, and to occur at the rate of anterograde transport, resident proteins must be present in vesicles at a higher concentration than in cisternal membranes. We have tested this prediction by localizing two steady-state residents of medial Golgi cisternae (mannosidase II and N-acetylglucosaminyl transferase I) at the electron microscopic level in intact cells. In both cases, these abundant cisternal constituents were strongly excluded from buds and vesicles. This result suggests that cisternal progression takes place substantially more slowly than most protein transport and therefore is unlikely to be the predominant mechanism of anterograde movement.  相似文献   

12.
The effect of mechanical stress on Golgi apparatus was examined in thin slices of rat liver. The findings should be of relevance both to electron microscopists who routinely mince tissue, and to biochemists who homogenize tissues to isolate membranous components. The swelling response of Golgi apparatus to monensin was used as an assay because the swelling response is distinct and is thought to result from a well-characterized metabolic process, namely the acidification of vesicles. The results showed that the swelling response was compromised by monensin as far away as 6-7 cells from a cut surface even though other aspects of cell ultrastructure were not altered from normal. The monensin-induced swelling response was also evaluated in isolated Golgi apparatus and found to be similar to that with tissue. Thus, mechanical stress such as commonly used to mince tissue or isolate tissue components, appears to markedly alter Golgi apparatus function compared to the situation in vivo. In this example, the altered response of Golgi apparatus to monensin indicated that some aspects associated with the ATP-dependent proton-pumping machinery of the trans-most cisternae and trans Golgi network were compromised.  相似文献   

13.
We describe a method by which horseradish peroxidase may be attached covalently to the surface of liposomes under conditions which permit minimal non-covalent association of the enzyme with the lipids. The coupling method adopted does not allow the formation of homopolymers of liposomes or peroxidase. For phosphatidylethanolamine/phosphatidylcholine and stearylamine/phosphatidylcholine vesicles, minimal disruption of vesicular structure is observed, whilst for phosphatidylserine vesicles, the lipid-protein complex appears to form structures much smaller than 25 nm in diameter. Stearylamine/phosphatidylcholine vesicles have been shown to retain entrapped inulin, and activity measurements for the peroxidase suggest that it is located exclusively on the external surface of the liposome membrane. Peroxidase can be localized histochemically which has permitted the morphological study of the coated liposomes and their interactions with cells.  相似文献   

14.
The cation-independent mannose 6-phosphate receptor (MPRCI) functions in the packaging of both newly made and extracellular lysosomal enzymes into lysosomes. The subcellular location of MPRCI reflects these two functions; receptor is found in the Golgi complex, in endosomes, and on the cell surface. To learn about the intracellular pathway followed by surface receptor and to study the relationship between the receptor pools, we examined the entry of the surface MPRCI into Golgi compartments that contain sialyltransferase. Sialic acid was removed from surface-labeled K562 cultured human erythroleukemia cells by neuraminidase treatment. When the cells were returned to culture at 37 degrees C, surface MPRCI was resialylated by the cells with a half-time of 1-2 h. Resialylation was inhibited by reduced temperature, a treatment that allows surface molecules to reach endosomes but blocks further transport. These results indicate that surface MPRCI is transported to the sialyltransferase compartment in the Golgi complex. After culture at 37 degrees C, a small fraction (10-20%) of the resialylated receptor was found on the cell surface. Because a similar fraction of the total receptor pool is found on the cell surface, it is likely that cell surface MPRCI mixes with the cellular pool after resialylation. These data also support the idea that extracellular and newly made lysosomal enzymes are transported to lysosomes through a common compartment.  相似文献   

15.
Kinetic characteristics of glucose transport and glucose phosphorylation were studied in the islet cell line beta TC-1 to explore the roles of these processes in determining the dependence of glucose metabolism and insulin secretion on external glucose. The predominant glucose transporter present was the rat brain/erythrocyte type (Glut1), as determined by RNA and immunoblot analysis. The liver/islet glucose transporter (Glut2) RNA was not detected. The functional parameters of zero-trans glucose entry were Km = 9.5 +/- 2 mM and Vmax = 15.2 +/- 2 nmol min-1 (microL of cell water)-1. Phosphorylation kinetics of two hexokinase activities were characterized in situ. A low-Km (0.036 mM) hexokinase with a Vmax of 0.40 nmol min-1 (microL of cell water)-1 was present along with a high-Km (10 mM) hexokinase, which appeared to conform to a cooperative model with a Hill coefficient of about 1.4 and a Vmax of 0.3 nmol min-1 (microL of cell water)-1. Intracellular glucose at steady state was about 80% of the extracellular glucose from 3 to 15 mM, and transport did not limit metabolism in this range. In this static (nonperifusion) system, 2-3 times more immunoreactive insulin was secreted into the medium at 15 mM glucose than at 3 mM. The dependence of insulin secretion on external glucose roughly paralleled the dependence of glucose metabolism on external glucose. Simulations with a model demonstrated the degree to which changes in transport activity would affect intracellular glucose levels and the rate of the high-Km hexokinase (with the potential to affect insulin release).  相似文献   

16.
Protein transport via the endoplasmic reticulum Golgi apparatus-cell surface export route was blocked when slices (6-15 cells thick) of livers of 10-day-old rats were incubated with 1 microM monensin. Production of secretory vesicles by Golgi apparatus was reduced or eliminated and, in their place, swollen cisternae accumulated in the cytoplasm at the trans Golgi apparatus face. The swelling response was restricted to the six external cell layers of the liver slices, and the number of cells showing the response was little increased by either a greater concentration of monensin or by longer times of incubation. When monensin was added post-chase to the slices, flux of radioactive proteins to the cell surface was inhibited by about 80% as determined from standard pulse-chase analyses with isolated cell fractions. Radioactive proteins accumulated in both endoplasmic reticulum and Golgi apparatus and in a fraction that may contain monensin-blocked Golgi apparatus cisternae released from the stack. The latter fraction was characterized by galactosyltransferase/thiamine pyrophosphatase ratios similar to those of Golgi apparatus from control slices. The use of monensin with the tissue slice system may provide an opportunity for the cells to accumulate monensin-blocked Golgi apparatus cisternae in sufficient quantities to permit their isolation and purification by conventional cell fractionation methods.  相似文献   

17.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

18.
Preparations enriched in part-smooth (lacking ribosomes), part-rough (with ribosomes) transitional elements of the endoplasmic reticulum when incubated with ATP plus a cytosol fraction responded by the formation of blebbing profiles and approximately 60-nm vesicles. The 60-nm vesicles formed resembled closely transition vesicles in situ considered to function in the transfer of membrane materials between the endoplasmic reticulum and the Golgi apparatus. The transition elements following incubation with ATP and cytosol were resolved by preparative free-flow electrophoresis into fractions of differing electronegativity. The main fraction contained the larger vesicles of the transitional membrane elements, while a less electronegative minor shoulder fraction was enriched in the 60-nm vesicles. If the vesicles concentrated by preparative free-flow electrophoresis were from material previously radiolabeled with [3H]leucine and then added to Golgi apparatus immobilized to nitrocellulose, radioactivity was transferred to the Golgi apparatus membranes. The transfer was rapid (T1/2 of about 5 min), efficient (10-30% of the total radioactivity of the transition vesicle preparations was transferred to Golgi apparatus), and independent of added ATP but facilitated by cytosol. Transfer was specific and apparently unidirectional in that Golgi apparatus membranes were ineffective as donor membranes and endoplasmic reticulum vesicles were ineffective as recipient membranes. Using a heterologous system with transition vesicles from rat liver and Golgi apparatus isolated from guinea pig liver, coalescence of the small endoplasmic reticulum-derived vesicles with Golgi apparatus membranes was demonstrated using immunocytochemistry. Employed were polyclonal antibodies directed against the isolated rat transition vesicle preparations. When localized by immunogold procedures at the electron microscope level, regions of rat-derived vesicles were found fused with cisternae of guinea pig Golgi apparatus immobilized to nitrocellulose strips. Membrane transfer was demonstrated from experiments where transition vesicle membrane proteins were radioiodinated by the Bolton-Hunter procedure. Additionally, radiolabeled peptide bands not present initially in endoplasmic reticulum appeared following coalescence of the derived vesicles with Golgi apparatus. These bands, indicative of processing, required that both Golgi apparatus and transition vesicles be present and did not occur in incubated endoplasmic reticulum preparations or on nitrocellulose strips to which no Golgi apparatus were added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Previous studies have suggested that Uukuniemi virus, a bunyavirus, matures at the membranes of the Golgi complex. In this study we have employed immunocytochemical techniques to analyze in detail the budding compartment(s) of the virus. Electron microscopy of infected BHK-21 cells showed that virus particles are found in the cisternae throughout the Golgi stack. Within the cisternae, the virus particles were located preferentially in the dilated rims. This would suggest that virus budding may begin at or before the cis Golgi membranes. The virus budding compartment was studied further by immunoelectron microscopy with a pre-Golgi intermediate compartment marker, p58, and a Golgi stack marker protein, mannosidase II (ManII). Virus particles and budding virus were detected in ManII-positive Golgi stack membranes and, interestingly, in both juxtanuclear and peripheral p58-positive elements of the intermediate compartment. In cells incubated at 15 degrees C the nucleocapsid and virus envelope proteins were seen to accumulate in the intermediate compartment. Immunoelectron microscopy demonstrated that at 15 degrees C the nucleocapsid is associated with membranes that show a characteristic distribution and tubulo-vesicular morphology of the pre-Golgi intermediate compartment. These membranes contained virus particles in the lumen. The results indicate that the first site of formation of Uukuniemi virus particles is the pre-Golgi intermediate compartment and that virus budding continues in the Golgi stack. The results raise questions about the intracellular transport pathway of the virus particles, which are 100 to 120 nm in diameter and are therefore too large to be transported in the 60-nm-diameter vesicles postulated to function in the intra-Golgi transport. The distribution of the virus in the Golgi stack may imply that the cisternae themselves have a role in the vectorial transport of virus particles.  相似文献   

20.
Summary Binding sites for horseradish peroxidase (HRP), with unusual properties, were detected on the surface of cultured and isolated cells after the cells (on cover slips) had been quickly dried, fixed in cold methanol, and postfixed in a paraformaldehyde solution. The reaction for surface-bound HRP was suppressed by micromolar concentrations of glycoproteins such as invertase, equine luteinizing hormone (eLH) or human chorionic gonadotropin (hCG). The reaction was also suppressed by 20 mM CDP, UDP, GTP, NAD, and ribose 5-phosphate. Two to six times higher concentrations of GMP, fructose 1-phosphate, galactose 6 phosphate, mannose 6-phosphate, fructose 6-phosphate, and glucose 6-phosphate were required to suppress the binding eaction. AMP, ATP, heparin, mannan, and eight non-phosphorylated sugars showed relatively low competing potencies but fucoidin and -lactalbumin were strong inhibitors. No addition of Ca2+ was required for the binding of HRP to the cell surface. However, calcium-depleted, inactive HRP did not compete with the binding of native (calcium-containing) HRP whereas H2O2-inactivated HRP suppressed the binding. GTP, NAD, ribose 5-phosphate, and EGTA accelerated the release of previously-bound HRP from the cell surface whereas glycoproteins (invertase, cLH, and hCG) did not do se. Addition of Ca2+ to GTP, NAD, ribose 5-phosphate or to EGTA prevented the accelerated release of HRP from the cell surface. It is suggested that calciam, present either in the surface membrane or in HRP itself, is involved in the binding of HRP to the cell surface and in the inhibition of binding by GTP, NAD, and ribose 5-phosphate. It is also suggested that -lactalbumin, GTP, UDP, and CDP compete with the binding of HRP to a glycosyltransferase on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号