首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the use of the technique of rapid airway occlusion during constant flow inflation, respiratory mechanics were studied in eight anesthetized paralyzed supine normal humans during zero (ZEEP) and positive end-expiratory pressure (PEEP) ventilation. PEEP increased the end-expiratory lung volume by 0.49 liter. The changes in transpulmonary and esophageal pressure after flow interruption were analyzed in terms of a seven-parameter "viscoelastic" model. This allowed assessment of static lung and chest wall elastance (Est,L and Est,W), partitioning of overall resistance into airway interrupter (Rint,L) and tissue resistances (delta RL and delta RW), and computation of lung and chest wall "viscoelastic constants." With increasing flow, Rint,L increased, whereas delta RL and delta RW decreased, as predicted by the model. Est,L, Est,W, and Rint,L decreased significantly with PEEP because of increased lung volume, whereas delta R and viscoelastic constants of lung and chest wall were independent of PEEP. The results indicate that PEEP caused a significant decrease in Rint,L, Est,L, and Est,W, whereas the dynamic tissue behavior, as reflected by delta RL and delta RW, did not change.  相似文献   

2.
Pulmonary and chest wall mechanics were studied in six anesthetized paralyzed dogs, by use of the technique of rapid airway occlusion during constant flow inflation. Analysis of the pressure changes after flow interruption allowed us to partition the overall resistance of the lung (Rl) and chest wall (Rw) and total respiratory system (Rrs) into two components, one (Rinit) reflecting in the lung airway resistance (Raw), the other (delta R) reflecting primarily the viscoelastic properties of the pulmonary and chest wall tissues. The effects of varying inspiratory flow and inflation volume were interpreted in terms of frequency dependence of resistance, by using a spring-and-dashpot model previously proposed and substantiated by Bates et al. (Proc. 9th Annu. Conf. IEEE Med. Biol. Soc., 1987, vol. 3, p. 1802-1803). We observed that 1) Raw and Rw,init were nearly equal and small relative to Rl and Rw (both were unaffected by flow); 2) Rrs,init decreased slightly with increasing volume; 3) both delta Rl and delta Rw decreased with increasing flow and increased with increasing lung volume. These changes were manifestations of frequency dependence of delta R, as it is predicted by the model; 4) Rrs, Rl, and Rw followed the same trends as delta R. These results corroborate data previously reported in the literature with the use of different techniques to measure airways and pulmonary tissue resistances and confirm that the use of Rl to assess bronchial reactivity is problematic. The interrupter techniques provides a convenient way to obtain Raw values, as well as analogs of lung and chest wall tissue resistances in intact dogs.  相似文献   

3.
The effects of inspiratory flow rate and inflation volume on the resistive properties of the chest wall were investigated in six anesthetized paralyzed cats by use of the technique of rapid airway occlusion during constant flow inflation. This allowed measurement of the intrinsic resistance (Rw,min) and overall dynamic inspiratory impedance (Rw,max), which includes the additional pressure losses due to time constant inequalities within the chest wall tissues and/or stress adaptation. These results, together with our previous data pertaining to the lung (Kochi et al., J. Appl. Physiol. 64: 441-450, 1988), allowed us to determine Rmin and Rmax of the total respiratory system (rs). We observed that 1) Rw,max and Rrs,max exhibited marked frequency dependence; 2) Rw,min was independent of flow (V) and inspired volume (delta V), whereas Rrs,min increased linearly with V and decreased with increasing delta V; 3) Rw,max decreased with increasing V, whereas Rrs,max exhibited a minimum value at a flow rate substantially higher than the resting range of V; 4) both Rw,max and Rrs,max increased with increasing delta V. We conclude that during resting breathing, flow resistance of the chest wall and total respiratory system, as conventionally measured, includes a significant component reflecting time constant inequalities and/or stress adaptation phenomena.  相似文献   

4.
The effects of inspiratory flow (V) and inflation volume (delta V) on the mechanical properties of the respiratory system in eight ARDS patients were investigated using the technique of rapid airway occlusion during constant-flow inflation. We measured interrupter resistance (Rint,rs), which in humans represents airway resistance, the additional resistance (delta Rrs) due to viscoelastic pressure dissipations and time constant inequalities, and static (Est,rs) and dynamic (Edyn,rs) elastance. The results were compared with a previous study on 16 normal anesthetized paralyzed humans (D'Angelo et al. J. Appl. Physiol. 67: 2556-2564, 1989). We observed that 1) resistance and elastance were higher in ARDS patients; 2) with increasing V, Rint,rs and Est,rs did not change, delta Rrs decreased progressively, and Edyn,rs increased progressively; 3) with increasing delta V, Rint,rs decreased slightly, delta Rrs increased progressively, and Est,rs and Edyn,rs showed an initial decrease followed by a secondary increase noted only in the ARDS patients. The above findings could be explained in terms of a model incorporating a standard resistance in parallel with a standard elastance and a series spring-and-dashpot body that represents the stress adaptation units within the tissues of the respiratory system.  相似文献   

5.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

6.
In patients with adult respiratory distress syndrome (ARDS) we studied the effect of positive end-expiratory pressure (PEEP) on respiratory mechanics. We used the technique of rapid airway occlusion during constant flow (V) inflation to partition the total respiratory system resistance (Rrs) into the interrupter resistance (Rint,rs) and the additional resistance (delta Rrs) due to viscoelastic pressure dissipations and time constant inequalities. We also measured static (Est,rs) and dynamic (Edyn,rs) elastance of the respiratory system. The procedure was carried out in nine ARDS patients at different inspiratory V and inflation volumes (delta V) at PEEP of 0, 5, 10, and 15 cmH2O. We found that during baseline ventilation (delta V = 0.7 liter and V = 1 l/s), Est,rs, Edyn,rs, and Rint,rs did not change significantly with PEEP, whereas delta Rrs and Rrs increased significantly only with PEEP of 15 cmH2O. The increase of delta Rrs and Rrs with PEEP was positively correlated with the concomitant changes in end-expiratory lung volume (P < 0.001). At all levels of PEEP, under iso-delta V conditions, delta Rrs decreased with increasing V, whereas at a fixed V, delta Rrs increased with increasing delta V. A four-parameter model of the respiratory system failed to fully describe respiratory dynamics in the ARDS patients, probably due to nonlinearities.  相似文献   

7.
Using the technique of rapid airway occlusion during constant-flow inflation, we studied the effects of inflation volume, different baseline tidal volumes (10, 20, and 30 ml/kg), and vagotomy on the resistive and elastic properties of the lungs and chest wall in six anesthetized tracheotomized paralyzed mechanically ventilated cats. Before vagotomy, airway resistance decreased significantly with increasing inflation volume at all baseline tidal volumes. At any given inflation volume, airway resistance decreased with increasing baseline tidal volume. After vagotomy, airway resistance decreased markedly and was no longer affected by baseline tidal volume. Prevagotomy, pulmonary tissue resistance increased progressively with increasing lung volume and was not affected by baseline tidal volume. Pulmonary tissue resistance decreased postvagotomy. Chest wall tissue resistance increased during lung inflation but was not affected by either baseline tidal volume or vagotomy. The static volume-pressure relationships of the lungs and chest wall were not affected by either baseline tidal volume or vagotomy. The data were interpreted in terms of a linear viscoelastic model of the respiratory system (J. Appl. Physiol. 67: 2276-2285, 1989).  相似文献   

8.
We evaluated the effect of pulmonary edema on the frequency (f) and tidal volume (VT) dependences of respiratory system mechanical properties in the normal ranges of breathing. We measured resistance and elastance of the lungs (RL and EL) and chest wall of four anesthetized-paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz), delivered at a constant mean airway pressure. Measurements were made before and after severe pulmonary edema was produced by injection of 0.06 ml/kg oleic acid into the right atrium. Chest wall properties were not changed by the injection. Before oleic acid, EL increased slightly with increasing f in each dog but was independent of VT. RL decreased slightly and was independent of VT from 0.2 to 0.4 Hz, but above 0.4 Hz it tended to increase with increasing flow, presumably due to the airway contribution. After oleic acid injection, EL and RL increased greatly. Large negative dependences of EL on VT and of RL on f were also evident, so that EL and RL after oleic acid changed two- and fivefold, respectively, within the ranges of f and VT studied. We conclude that severe pulmonary edema changes lung properties so as to make behavior VT dependent (i.e., nonlinear) and very frequency dependent in the normal range of breathing.  相似文献   

9.
Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.  相似文献   

10.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

11.
In six spontaneously breathing anesthetized cats (pentobarbital sodium, 35 mg/kg ip), airflow, changes in lung volume, and tracheal and esophageal pressures were measured. Airflow was interrupted by brief airway occlusions during relaxed expirations (elicited via the Breuer-Hering inflation reflex) and throughout spontaneous breaths. A plateau in tracheal pressure occurred throughout relaxed expirations and the latter part of spontaneous expirations indicating respiratory muscle relaxation. Measurement of tracheal pressure, immediately preceding airflow, and corresponding volume enabled determination of respiratory system elastance and flow resistance. These were partitioned into lung and chest wall components using esophageal pressure. Respiratory system elastance was constant over the tidal volume range, divided approximately equally between the lung and chest wall. While the passive pressure-flow relationship for the respiratory system was linear, those for the lung and chest wall were curvilinear. Volume dependence of chest wall flow resistance was demonstrated. During inspiratory interruptions, tracheal pressure increased progressively; initial tracheal pressure was estimated by backward extrapolation. Inspiratory flow resistance of the lung and total respiratory system were constant. Force-velocity properties of the contracting inspiratory muscles contributed little to overall active resistance.  相似文献   

12.
Lung mechanics and morphometry of 10 normal open-chest rabbits (group A), mechanically ventilated (MV) with physiological tidal volumes (8-12 ml/kg), at zero end-expiratory pressure (ZEEP), for 3-4 h, were compared with those of five rabbits (group B) after 3-4 h of MV with a positive end-expiratory pressure (PEEP) of 2.3 cmH(2)O. Relative to initial MV on PEEP, MV on ZEEP caused a progressive increase in quasi-static elastance (+36%) and airway (Rint; +71%) and viscoelastic resistance (+29%), with no change in the viscoelastic time constant. After restoration of PEEP, quasi-static elastance and viscoelastic resistance returned to control levels, whereas Rint remained elevated (+22%). On PEEP, MV had no effect on lung mechanics. Gas exchange on PEEP was equally preserved in groups A and B, and the lung wet-to-dry ratios were normal. Both groups had normal alveolar morphology, whereas only group A had injured respiratory and membranous bronchioles. In conclusion, prolonged MV on ZEEP induces histological evidence of peripheral airway injury with a concurrent increase in Rint, which persists after restoration of normal end-expiratory volumes. This is probably due to cyclic opening and closing of peripheral airways on ZEEP.  相似文献   

13.
The nonlinearity of lung tissues and airways was studied in six anesthetized and paralyzed open-chest dogs by means of 0.1-Hz sinusoidal volume forcing at mean transpulmonary pressures (Ptp) of 5 and 10 cmH2O. Lung resistance (RL) and elastance (EL) were determined in a 32-fold range (15-460 ml) of tidal volume (VT), both by means of spectrum analysis at the fundamental frequency and with conventional time-domain techniques. Alveolar capsules were used to separate the tissue and airway properties. A very small amplitude dependence was found: with increasing VT, the frequency-domain estimates of RL decreased by 5.3 and 14%, whereas EL decreased by 20 and 22% at Ptp = 5 and 10 cmH2O, respectively. The VT dependences of the time-domain estimates of RL were higher: 10.5 and 20% at Ptp = 5 and 10 cmH2O, respectively, whereas EL remained the same. The airway resistance increased moderately with flow amplitude and was smaller at the higher Ptp level. Analysis of the harmonic distortions of airway opening pressure and the alveolar pressures indicated that nonlinear harmonic production is moderate even at the highest VT and that VT dependence is homogeneous throughout the tissues. In three other dogs it was demonstrated that VT dependences of RL and EL were similar in situ and in isolated lungs at both Ptp levels.  相似文献   

14.
Frequency-dependent characteristics of lung resistance (RL) and elastance (EL) are sensitive to different patterns of airway obstruction. We used an enhanced ventilator waveform (EVW) to measure inspiratory RL and EL spectra in ventilated patients during thoracic surgery. The EVW delivers an inspiratory flow waveform with enhanced spectral excitation from 0.156 to 8.1 Hz. Estimates of the coefficients in a trigonometric approximation of the EVW flow and transpulmonary pressure inspirations yielded inspiratory RL and EL spectra. We applied the EVW in a group with mild obstruction undergoing various thoracoscopic procedures (n = 6), and another group with severe chronic obstructive pulmonary disease undergoing lung volume reduction surgery (n = 8). Measurements were made at positive end-expiratory pressure (PEEP) of 0, 3, and 6 cmH(2)O. Inspiratory RL was similar in both groups despite marked differences in spirometry. The chronic obstructive pulmonary disease patients demonstrated a pronounced frequency-dependent increase in inspiratory EL consistent with severe heterogeneous peripheral airway obstruction. PEEP appears to have beneficial effects by reducing peripheral airway resistance. Lung volume reduction surgery resulted in increased inspiratory RL and EL at all frequencies and PEEPs, possibly due to loss of diseased lung tissue, pulmonary edema, increased mechanical heterogeneity, and/or an improvement in airway tethering.  相似文献   

15.
In five anesthetized paralyzed cats, mechanically ventilated with tidal volumes of 36-48 ml, the isovolume pressure-flow (IVPF) relationships of the lung were studied under control conditions and during serotonin-induced bronchoconstriction. At the end of a tidal inspiration, airway opening pressure was set between +3 and -15 cmH2O for single tidal expirations. After control measurements, animals were treated with progressively increasing doses of intravenous serotonin (10, 20, 50, and 100 micrograms.kg-1.min-1) and all measurements were repeated at each dose. No animal became flow limited during passive expiration against atmospheric pressure. Disregarding flow-limited segments, IVPF plots for three lung volumes showed that the resistive pressure-flow relationships were curvilinear under all conditions, thus fitting Rohrer's equation. Under control conditions and during the lowest dose of serotonin, the volume dependence of pulmonary resistance (RL) tended to balance its flow dependence so that during lung deflation against atmospheric pressure RL remained nearly constant. However, as bronchoconstriction became more pronounced, RL often increased disproportionately at the lower lung volumes. Changes in expiratory RL with serotonin relative to control values varied according to the flow rates used to make comparisons. The technique used to determine RL will partly determine the results obtained.  相似文献   

16.
We recently proposed an eight-parameter model of the respiratory system to account for its mechanical behavior when flow is interrupted during passive expiration. The model consists of two four-parameter submodels representing the lungs and the chest wall, respectively. The lung submodel consists of an airways resistance together with elements embodying the viscoelastic properties of the lung tissues. The chest wall submodel has similar structure. We estimated the parameters of the model from data obtained in four normal, anesthetized, paralyzed, tracheostomized mongrel dogs. This model explains why lung tissue and chest wall resistances should be markedly frequency dependent at low frequencies and also permits a physiological interpretation of resistance measurements provided by the flow interruption method.  相似文献   

17.
To determine the sensitivity of pulmonary resistance (RL) to changes in breathing frequency and tidal volume, we measured RL in intact anesthetized dogs over a range of breathing frequencies and tidal volumes centering around those encountered during quiet breathing. To investigate mechanisms responsible for changes in RL, the relative contribution of airway resistance (Raw) and tissue resistance (Rti) to RL at similar breathing frequencies and tidal volumes was studied in six excised, exsanguinated canine left lungs. Lung volume was sinusoidally varied, with tidal volumes of 10, 20, and 40% of vital capacity. Pressures were measured at three alveolar sites (PA) with alveolar capsules and at the airway opening (Pao). Measurements were made during oscillation at five frequencies between 5 and 45 min-1 at each tidal volume. Resistances were calculated by assuming a linear equation of motion and submitting lung volume, flow, Pao, and PA to a multiple linear regression. RL decreased with increasing frequency and decreased with increasing tidal volume in both isolated and intact lungs. In isolated lungs, Rti decreased with increasing frequency but was independent of tidal volume. Raw was independent of frequency but decreased with tidal volume. The contribution of Rti to RL ranged from 93 +/- 4% (SD) with low frequency and large tidal volume to 41 +/- 24% at high frequency and small tidal volume. We conclude that the RL is highly dependent on breathing frequency and less dependent on tidal volume during conditions similar to quiet breathing and that these findings are explained by changes in the relative contributions of Raw and Rti to RL.  相似文献   

18.
The interrupter method for measuring respiratory system resistance involves rapidly interrupting flow at the mouth while measuring the pressure just distal to the point of interruption. The pressure signal observed invariably exhibits two distinct phases. The first phase is a very rapid jump, designated delta Pinit, which occurs immediately on interruption of flow. The second phase is designated delta Pdif and is a further pressure change in the same direction as delta Pinit but evolving over several seconds. The physiological interpretations of delta Pinit and delta Pdif have been somewhat unclear. Delta Pinit has been taken to equal the pressure drop across the pulmonary airways, possibly with a contribution from the tissues of the respiratory system. Delta Pdif can arise, in principle, from two sources: gas redistribution throughout the lung after interruption of flow and stress recovery within the tissues. To resolve these issues we performed interruption experiments on anesthetized paralyzed, tracheotomized, open-chest normal dogs during passive expiration while measuring alveolar pressures at three sites with alveolar capsules. We found that, in the absence of the chest wall, delta Pinit reflects only the resistance of the airways and that delta Pdif can be ascribed almost entirely to the stress recovery properties of lung tissues.  相似文献   

19.
The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25-30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.  相似文献   

20.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号