首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The capability of Halobacterium sp. NRC-1 to synthesize carboxyl ester hydrolases was investigated, and the effect of physicochemical conditions on the growth rate and production of esterases was evaluated. The haloarchaeon synthesized a carboxyl ester hydrolase, confirming the genomic prediction. This enzymatic activity was intracellularly produced as a growth-associated metabolite. Esterase activity was assayed using different p-nitrophenyl-esters and triacyl-glycerides, which showed a preference for hydrolyzing tributyrin. The archaeal growth rate and esterase production were significantly influenced by the pH and the NaCl concentration. An interaction effect between temperature and NaCl was also seen. The maximal growth rate and esterase production found for Halobacterium sp. NRC-1 were 0.136 h−1 (at 4.2 M NaCl, pH 6 and 44°C) and 1.64 U/l (at 4.6 M NaCl, pH 6 and 30°C), respectively. Furthermore, the effects of NaCl concentration, pH and temperature on enzyme activity were studied. Two maximal esterase activities were elucidated from the intracellular crude extract when it was incubated at different NaCl concentrations (1 M and 5 M) and at different pHs (6 and 7.5). This is the first report that shows experimentally the synthesis of carboxyl ester hydrolases by Halobacterium sp. NRC-1. This enzyme was found to be extremely halophilic (5 M NaCl) and thermophilic (80°C), making it very interesting for future investigations in non-aqueous biocatalysis.  相似文献   

3.
We report that the halophilic archaeon Halobacterium sp. strain NRC-1 is highly resistant to desiccation, high vacuum and 60Co gamma irradiation. Halobacterium sp. was able to repair extensive double strand DNA breaks (DSBs) in its genomic DNA, produced both by desiccation and by gamma irradiation, within hours of damage induction. We propose that resistance to high vacuum and 60Co gamma irradiation is a consequence of its adaptation to desiccating conditions. Gamma resistance in Halobacterium sp. was dependent on growth stage with cultures in earlier stages exhibiting higher resistance. Membrane pigments, specifically bacterioruberin, offered protection against cellular damages induced by high doses (5 kGy) of gamma irradiation. High-salt conditions were found to create a protective environment against gamma irradiation in vivo by comparing the amount of DSBs induced by ionizing radiation in the chromosomal DNA of Halobacterium sp. to that of the more radiation-sensitive Escherichia coli that grows in lower-salt conditions. No inducible response was observed after exposing Halobacterium sp. to a nonlethal dose (0.5 kGy) of gamma ray and subsequently exposing the cells to either a high dose (5 kGy) of gamma ray or desiccating conditions. We find that the hypersaline environment in which Halobacterium sp. flourishes is a fundamental factor for its resistance to desiccation, damaging radiation and high vacuum.  相似文献   

4.
5.

Background

Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential.

Results

Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene.

Conclusion

The results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.  相似文献   

6.
7.
8.
Halobacterium species display a variety of responses to light, including phototrophic growth, phototactic behavior, and photoprotective mechanisms. The complete genome sequence of Halobacterium species NRC-1 (Proc Natl Acad Sci USA 97: 12176–12181, 2000), coupled with the availability of a battery of methods for its analysis makes this an ideal model system for studying photobiology among the archaea. Here, we review: (1) the structure of the 2.57 Mbp Halobacterium NRC-1 genome, including a large chromosome, two minichromosomes, and 91 transposable IS elements; (2) the purple membrane regulon, which programs the accumulation of large quantities of the light-driven proton pump, bacteriorhodopsin, and allows for a period of phototrophic growth; (3) components of the sophisticated pathways for color-sensitive phototaxis; (4) the gas vesicle gene cluster, which codes for cell buoyancy organelles; (5) pathways for the production of carotenoid pigments and retinal, (6) processes for the repair of DNA damage; and (7) putative homologs of circadian rhythm regulators. We conclude with a discussion of the power of systems biology for comprehensive understanding of Halobacterium NRC-1 photobiology. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Free‐floating Ulva prolifera is one of the causative species of green tides. When green tides occur, massive mats of floating U. prolifera thalli accumulate rapidly in surface waters with daily growth rates as high as 56%. The upper thalli of the mats experience environmental changes such as the change in carbon source, high salinity, and desiccation. In this study, the photosynthetic performances of PSI and PSII in U. prolifera thalli exposed to different atmospheric carbon dioxide (CO2) levels were measured. Changes in photosynthesis within salinity treatments and dehydration under different CO2 concentrations were also analyzed. The results showed that PSII activity was enhanced as CO2 increased, suggesting that CO2 assimilation was enhanced and U. prolifera thalli can utilize CO2 in the atmosphere directly, even when under moderate stress. In addition, changes in the proteome of U. prolifera in response to salt stress were investigated. Stress‐tolerance proteins appeared to have an important role in the response to salinity stress, whereas the abundance of proteins related to metabolism showed no significant change under low salinity treatments. These findings may be one of the main reasons for the extremely high growth rate of free‐floating U. prolifera when green tides occur.  相似文献   

11.

Background  

Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria.  相似文献   

12.
13.
14.

Background

Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants.

Results

Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry.

Conclusion

Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.  相似文献   

15.
In‐depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label‐free mass spectrometry. Qualitative analysis of protein identification data from high‐pH/reversed‐phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low‐molecular‐weight and membrane‐associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH‐MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii’s universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.  相似文献   

16.
17.
Here we report the characterization of the type-1 isopentenyl diphosphate isomerase derived from Halobacterium sp. NRC-1. The expressed purified enzyme showed maximum isomerase activity in the presence of 1 M NaCl at 37 °C at pH 6.0. This type-1 enzyme appears to be the first for which the Co2+ ion is required for activity.  相似文献   

18.

Background  

Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb), which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa) and hypoxia (Po2: 3 kPa), respectively.  相似文献   

19.
20.
Lactococcus lactis is a bacteria with high biotechnological potential, where is frequently used in the amino acid production and production of fermented dairy products, as well as drug delivery systems and mucosal vaccine vector. The knowledge of a functional core proteome is important extremely for both fundamental understanding of cell functions and for synthetic biology applications. In this study, we characterized the L. lacits proteome from proteomic analysis of four biotechnological strains L. lactis: L. lactis subsp. lactis NCDO2118, L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris NZ9000 and L. lactis subsp. cremoris MG1363. Our label-free quantitative proteomic analysis of the whole bacterial lysates from each strains resulted in the characterization of the L. lactis core proteome that was composed by 586 proteins, which might contribute to resistance of this bacterium to different stress conditions as well as involved in the probiotic characteristic of L. lactis. Kegg enrichment analysis shows that ribosome, metabolic pathways, pyruvate metabolism and microbial metabolism in diverse environments were the most enriched. According to our quantitative proteomic analysis, proteins related to translation process were the more abundant in the core proteome, which represent an important step in the synthetic biology. In addition, we identified a subset of conserved proteins that are exclusive of the L. lactis subsp. cremoris or L. lactis subsp. lactis, which some are related to metabolic pathway exclusive. Regarding specific proteome of NCDO2118, we detected ‘strain-specific proteins’. Finally, proteogenomics analysis allows the identification of proteins, which were not previously annotated in IL1403 and MG1363. The results obtained in this study allowed to increase our knowledge about the biology of L. lactis, which contributes to the implementation of strategies that make it possible to increase the biotechnological potential of this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号