首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Biological studies and medical application of stem cells often require the isolation of stem cells from a mixed cell population, including the detection of cancer stem cells in tumor tissue, and isolation of induced pluripotent stem cells after eliciting the expression of specific genes in adult cells. Here we report the detection of Oct-4 mRNA and SSEA-1 protein in live carcinoma stem cells using respectively molecular beacon and dye-labeled antibody, aiming to establish a new method for stem cells detection and isolation.  相似文献   

2.

Background  

Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task.  相似文献   

3.
4.

Background  

Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry.  相似文献   

5.

Background  

The localization of specific mRNA generates cell polarity by controlling the translation sites of specific proteins. Although most of these events depend on differences in gene expression, no method is available to examine time dependent gene expression of individual living cells. In situ hybridization (ISH) is a powerful and useful method for detecting the localization of mRNAs, but it does not allow a time dependent analysis of mRNA expression in single living cells because the cells have to be fixed for mRNA detection. To overcome these issues, the extraction of biomolecules such as mRNAs, proteins, and lipids from living cells should be performed without severe damage to the cells. In previous studies, we have reported a single cell nanoprobe (SCN) method to examine gene expression of individual living cells using atomic force microscopy (AFM) without killing the cells.  相似文献   

6.

Background  

Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation.  相似文献   

7.

Background

Circulating CD4+ T helper cells are activated through interactions with antigen presenting cells and undergo differentiation into specific T helper cell subsets depending on the type of antigen encountered. In addition, the relative composition of the circulating CD4+ T cell population changes as animals mature with an increased percentage of the population being memory/effector type cells.

Results

Here, we report on the highly plastic nature of DNA methylation at the genome-wide level as T cells undergo activation, differentiation and aging. Of particular note were the findings that DNA demethylation occurred rapidly following T cell activation and that all differentiated T cell populations displayed lower levels of global methylation than the non-differentiated population. In addition, T cells from older mice had a reduced level of DNA methylation, most likely explained by the increase in the memory/effector cell fraction. Although significant genome-wide changes were observed, changes in DNA methylation at individual genes were restricted to specific cell types. Changes in the expression of enzymes involved in DNA methylation and demethylation reflect in most cases the changes observed in the genome-wide DNA methylation status.

Conclusion

We have demonstrated that DNA methylation is dynamic and flexible in CD4+ T cells and changes rapidly both in a genome-wide and in a targeted manner during T cell activation, differentiation. These changes are accompanied by parallel changes in the enzymatic complexes that have been implicated in DNA methylation and demethylation implying that the balance between these opposing activities may play a role in the maintaining the methylation profile of a given cell type but also allow flexibility in a cell population that needs to respond rapidly to environmental signals.  相似文献   

8.

Background

Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians.

Methods

Using fluorescence-activated cell sorting (FACS), coral cell suspension were sorted into different cellular populations using fluorescent cell markers that are non-species specific. Over 30 different cell markers were tested. Additionally, cell suspension from Aiptasia pallida was also tested, and a phagocytosis test was done as a downstream functional assay.

Results

We found that 24 of the screened markers positively labeled coral cells and 16 differentiated cell sub-populations. We identified 12 different cellular sub-populations using three markers, and found that each sub-population is primarily homogeneous. Lastly, we verified this technique in a sea anemone, Aiptasia pallida, and found that with minor modifications, a similar gating strategy can be successfully applied. Additionally, within A. pallida, we show elevated phagocytosis of sorted cells based on an immune associated marker.

Conclusions

In this study, we successfully adapted FACS for isolating coral cell populations and conclude that this technique is translatable for future use in other species. This technique has the potential to be used for different types of studies on the cellular stress response and other immunological studies.
  相似文献   

9.
We have used highly specific, directly fluorescein-conjugated heterologous (conventional) and monoclonal antibodies directed against mouse immunoglobulin isotypes in conjunction with the fluorescence activated cell sorter (FACS) to enrich and clone hybridoma cells producing new immunoglobulin heavy chain constant regions. Each variant retains the parental heavy chain variable region and the parental immunoglobulin light chain; thereby each variant binds the same dansyl (DNS) hapten. These isotype switch variants occur at frequencies of approximately 10-5 to 10-6. We were able to isolate the variants by first sorting for an approximate 1000-fold enrichment of the desired immunoglobulin-producing cells, growing these cells for five to nine days, followed by a second 1000-fold enrichment and direct cell cloning into 96 well culture trays. Clones were screened only 3-5 weeks after the original selection for secretion of dansyl-binding immunoglobulin of the selected isotype. Judicious combination of existing methods permits improved analytical techniques using the cell sorter. These include: first, "red" fluorescence staining of dead cells with ethidium bromide or propidium iodide and using the red fluorescence measurement to exclude dead cells from the green fluorescence selection; and second, the use logarithmic amplification of fluorescence signals, allowing for more succinct selection of fluorescence parameters for sorting.  相似文献   

10.

Background  

Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals.  相似文献   

11.
12.

Background  

Quantifying cell division and death is central to many studies in the biological sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and provides a rich source of information with which to test models of cell kinetics. Cell division and death have a stochastic component at the single-cell level, and the probabilities of these occurring in any given time interval may also undergo systematic variation at a population level. This gives rise to heterogeneity in proliferating cell populations. Branching processes provide a natural means of describing this behaviour.  相似文献   

13.

Background  

Identifying and isolating cells with specific behavioral characteristics will facilitate the understanding of the molecular basis regulating these behaviors. Although many approaches exist to characterize cell motility, retrieving cells of specific motility following analysis remains challenging.  相似文献   

14.

Background  

Immune-mediated rejection of labeled cells is a general problem in transplantation studies using cells labeled with any immunogenic marker, and also in gene therapy protocols. The aim of this study was to establish a syngeneic model for long-term histological cell tracking in the absence of immune-mediated rejection of labeled cells in immunocompetent animals. We used inbred transgenic Fischer 344 rats expressing human placental alkaline phosphatase (hPLAP) under the control of the ubiquitous R26 promoter for this study. hPLAP is an excellent marker enzyme, providing superb histological detection quality in paraffin and plastic sections.  相似文献   

15.
Gu B  Zhang J  Wang W  Mo L  Zhou Y  Chen L  Liu Y  Zhang M 《PloS one》2010,5(12):e15795

Background

Recent studies have shown that embryonic stem (ES) cells globally express most genes in the genome at the mRNA level; however, it is unclear whether this global expression is propagated to the protein level. Cell surface proteins could perform critical functions in ES cells, so determining whether ES cells globally express cell surface proteins would have significant implications for ES cell biology.

Methods and Principal Findings

The surface proteins of mouse ES cells were purified by biotin labeling and subjected to proteomics analysis. About 1000 transmembrane or secreted cell surface proteins were identified. These proteins covered a large variety if functional categories including signal transduction, adhesion and transporting. More over, mES cells promiscuously expressed a wide variety of tissue specific surface proteins. And many surface proteins were expressed heterogeneously on mES cells. We also find that human ES cells express a wide variety of tissue specific surface proteins.

Conclusions/Significance

Our results indicate that global gene expression is not simply a result of leaky gene expression, which could be attributed to the loose chromatin structure of ES cells; it is also propagated to the functional level. ES cells may use diverse surface proteins to receive signals from the diverse extracellular stimuli that initiate differentiation. Moreover, the promiscuous expression of tissue specific surface proteins illuminate new insights into the strategies of cell surface marker screening.  相似文献   

16.

Background

Breast cancer is one of the most common cancers among women throughout the world. Therefore, established cell lines are widely used as in vitro experimental models in cancer research.

Methods

Two continuous human breast cell lines, designated MBC1 and MBC2, were successfully established and characterized from invasive ductal breast carcinoma tissues of Malaysian patients. MBC1 and MBC2 have been characterized in terms of morphology analysis, population doubling time, clonogenic formation, wound healing assay, invasion assay, cell cycle, DNA profiling, fluorescence immunocytochemistry, Western blotting and karyotyping.

Results

MBC1 and MBC2 exhibited adherent monolayer epithelial morphology at a passage number of 150. Receptor status of MBC1 and MBC2 show (ER+, PR+, HER2+) and (ER+, PR-, HER2+), respectively. These results are in discordance with histopathological studies of the tumoral tissues, which were triple negative and (ER-, PR-, HER2+) for MBC1 and MBC2, respectively. Both cell lines were capable of growing in soft agar culture, which suggests their metastatic potential. The MBC1 and MBC2 metaphase spreads showed an abnormal karyotype, including hyperdiploidy and complex rearrangements with modes of 52–58 chromosomes per cell.

Conclusions

Loss or gain in secondary properties, deregulation and specific genetic changes possibly conferred receptor changes during the culturing of tumoral cells. Thus, we hypothesize that, among heterogenous tumoral cells, only a small minority of ER+/PR+/HER2+ and ER+/PR-/HER2+ cells with lower energy metabolism might survive and adjust easily to in vitro conditions. These cell lines will pave the way for new perspectives in genetic and biological investigations, drug resistance and chemotherapy studies, and would serve as prototype models in Malaysian breast carcinogenesis investigations.  相似文献   

17.

Background

Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs. MPCs could represent an important cell source for regenerative medicine applications. As HPL gives rise to a homogeneus MSC population, limiting the harvesting of other cell types, in this study we investigated the efficacy of pooled human AB serum (ABS) to provide clinically relevant numbers of both MSCs and MPCs for regenerative medicine applications by using the Quantum System.

Methods

Bone marrow aspirates were obtained from healthy adult individuals undergoing routine total hip replacement surgery and used to generate primary cultures in the bioreactor. HPL and ABS were tested as supplements to culture medium. Morphological observations, cytofluorimetric analysis, lactate and glucose level assessment were performed.

Results

ABS gave rise to both heterogeneous MSC and MPC population. About 95% of cells cultured in HPL showed a fibroblast-like morphology and typical mesenchymal surface markers, but MPCs were scarcely represented.

Discussion

The use of ABS appeared to sustain a large scale MSC production, as well as the recovery of a subset of MPCs, and resulted a suitable alternative to HPL in the cell generation based on the Quantum System.  相似文献   

18.

Background

Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.

Methodology

We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.

Significance

The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/brightfieldorstaining  相似文献   

19.
Previous studies have shown that the cholesteryl ester core of plasma low density lipoprotein (LDL) can be extracted with heptane and replaced with a variety of hydrophobic molecules. In the present report we use this reconstitution technique to incorporate two fluorescent probes, 3-pyrenemethyl-23, 24-dinor-5-cholen-22-oate-3β-yl oleate (PMCA oleate) and dioleyl fluorescein, into heptane-extracted LDL. Both fluorescent lipoprotein preparations were shown to be useful probes for visualizing the receptor-mediated endocytosis of LDL in cultured human fibroblasts. When normal fibroblasts were incubated at 37°C with either of the fluorescent LDL preparations, fluorescent granules accumulated in the perinuclear region of the cell. In contrast, fibroblasts from patients with the homozygous form of familial hypercholesterolemia (FH) that lack functional LDL receptors did not accumulate visible fluorescent granules when incubated with the fluorescent reconstituted LDL. A fluorescence-activated cell sorter was used to quantify the fluorescence intensity of individual cells that had been incubated with LDL reconstituted with dioleyl fluorescein. With this technique a population of normal fibroblasts could be distinguished from a population of FH fibroblasts. The current studies demonstrate the feasibility of using fluorescent reconstituted LDL in conjunction with the cell sorter to isolate mutant cells lacking functional LDL receptors.  相似文献   

20.

Background

The establishment of high producer is an important issue in Chinese hamster ovary (CHO) cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS)-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production.

Results

An internal ribosome entry site (IRES) was introduced for using two green fluorescence protein (GFP) fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (q Ab) than that of the unsorted pool. The q Ab was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and q Ab in individual selected clones.

Conclusions

This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of q Ab with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号