共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical analysis of microarray data: a Bayesian approach 总被引:2,自引:0,他引:2
The potential of microarray data is enormous. It allows us to monitor the expression of thousands of genes simultaneously. A common task with microarray is to determine which genes are differentially expressed between two samples obtained under two different conditions. Recently, several statistical methods have been proposed to perform such a task when there are replicate samples under each condition. Two major problems arise with microarray data. The first one is that the number of replicates is very small (usually 2-10), leading to noisy point estimates. As a consequence, traditional statistics that are based on the means and standard deviations, e.g. t-statistic, are not suitable. The second problem is that the number of genes is usually very large (approximately 10,000), and one is faced with an extreme multiple testing problem. Most multiple testing adjustments are relatively conservative, especially when the number of replicates is small. In this paper we present an empirical Bayes analysis that handles both problems very well. Using different parametrizations, we develop four statistics that can be used to test hypotheses about the means and/or variances of the gene expression levels in both one- and two-sample problems. The methods are illustrated using experimental data with prior knowledge. In addition, we present the result of a simulation comparing our methods to well-known statistics and multiple testing adjustments. 相似文献
2.
Bhattacharjee M Pritchard CC Nelson PS Arjas E 《Bioinformatics (Oxford, England)》2004,20(17):2943-2953
MOTIVATION: The statistical analysis of microarray data usually proceeds in a sequential manner, with the output of the previous step always serving as the input of the next one. However, the methods currently used in such analyses do not properly account for the fact that the intermediate results may not always be correct, then leading to cumulating error in the inferences drawn based on such steps. RESULTS: Here we show that, by an application of hierarchical Bayesian methodology, this sequential procedure can be replaced by a single joint analysis, while systematically accounting for the uncertainties in this process. Moreover, we can also integrate relevant functional information available from databases into such an analysis, thereby increasing the reliability of the biological conclusions that are drawn. We illustrate these points by analysing real data and by showing that the genes can be divided into categories of interest, with the defining characteristic depending on the biological question that is considered. We contend that the proposed method has advantages at two levels. First, there are gains in the statistical and biological results from the analysis of this particular dataset. Second, it opens up new possibilities in analysing microarray data in general. 相似文献
3.
4.
Background
The increasing complexity of genomic data presents several challenges for biologists. Limited computer monitor views of data complexity and the dynamic nature of data in the midst of discovery increase the challenge of integrating experimental results with information resources. The use of Gene Ontology enables researchers to summarize results of quantitative analyses in this framework, but the limitations of typical browser presentation restrict data access. 相似文献5.
Background
DNA microarrays open up a new horizon for studying the genetic determinants of disease. The high throughput nature of these arrays creates an enormous wealth of information, but also poses a challenge to data analysis. Inferential problems become even more pronounced as experimental designs used to collect data become more complex. An important example is multigroup data collected over different experimental groups, such as data collected from distinct stages of a disease process. We have developed a method specifically addressing these issues termed Bayesian ANOVA for microarrays (BAM). The BAM approach uses a special inferential regularization known as spike-and-slab shrinkage that provides an optimal balance between total false detections and total false non-detections. This translates into more reproducible differential calls. Spike and slab shrinkage is a form of regularization achieved by using information across all genes and groups simultaneously. 相似文献6.
MOTIVATION: Gene expression microarray experiments produce datasets with frequent missing expression values. Accurate estimation of missing values is an important prerequisite for efficient data analysis as many statistical and machine learning techniques either require a complete dataset or their results are significantly dependent on the quality of such estimates. A limitation of the existing estimation methods for microarray data is that they use no external information but the estimation is based solely on the expression data. We hypothesized that utilizing a priori information on functional similarities available from public databases facilitates the missing value estimation. RESULTS: We investigated whether semantic similarity originating from gene ontology (GO) annotations could improve the selection of relevant genes for missing value estimation. The relative contribution of each information source was automatically estimated from the data using an adaptive weight selection procedure. Our experimental results in yeast cDNA microarray datasets indicated that by considering GO information in the k-nearest neighbor algorithm we can enhance its performance considerably, especially when the number of experimental conditions is small and the percentage of missing values is high. The increase of performance was less evident with a more sophisticated estimation method. We conclude that even a small proportion of annotated genes can provide improvements in data quality significant for the eventual interpretation of the microarray experiments. AVAILABILITY: Java and Matlab codes are available on request from the authors. SUPPLEMENTARY MATERIAL: Available online at http://users.utu.fi/jotatu/GOImpute.html. 相似文献
7.
MOTIVATION: A common task in microarray data analysis consists of identifying genes associated with a phenotype. When the outcomes of interest are censored time-to-event data, standard approaches assess the effect of genes by fitting univariate survival models. In this paper, we propose a Bayesian variable selection approach, which allows the identification of relevant markers by jointly assessing sets of genes. We consider accelerated failure time (AFT) models with log-normal and log-t distributional assumptions. A data augmentation approach is used to impute the failure times of censored observations and mixture priors are used for the regression coefficients to identify promising subsets of variables. The proposed method provides a unified procedure for the selection of relevant genes and the prediction of survivor functions. RESULTS: We demonstrate the performance of the method on simulated examples and on several microarray datasets. For the simulation study, we consider scenarios with large number of noisy variables and different degrees of correlation between the relevant and non-relevant (noisy) variables. We are able to identify the correct covariates and obtain good prediction of the survivor functions. For the microarray applications, some of our selected genes are known to be related to the diseases under study and a few are in agreement with findings from other researchers. AVAILABILITY: The Matlab code for implementing the Bayesian variable selection method may be obtained from the corresponding author. CONTACT: mvannucci@stat.tamu.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
8.
9.
Background
Determining whether a gene is differentially expressed in two different samples remains an important statistical problem. Prior work in this area has featured the use of t-tests with pooled estimates of the sample variance based on similarly expressed genes. These methods do not display consistent behavior across the entire range of pooling and can be biased when the prior hyperparameters are specified heuristically. 相似文献10.
AMADA: analysis of microarray data 总被引:9,自引:0,他引:9
SUMMARY: AMADA is a Windows program for identifying co-expressed genes from microarray data. It performs data transformation, principal component analysis, a variety of cluster analyses and extensive graphic functions for visualizing expression profiles. 相似文献
11.
Boyce K Kriete A Nagatomi S Kelder B Coschigano K Kopchick JJ 《Omics : a journal of integrative biology》2005,9(3):251-265
Combining results from gene microarrays, clinical chemistry, and quantitative tissue histomorphology in an integrated bioinformatics setting enables prioritization of gene families as well as individual genes in a type II diabetes animal study. This new methodology takes advantage of a time-controlled mouse study as the animals progress from a normal phenotype to that of type II diabetes. Profiles from different levels of the biological hierarchy of unpooled entities provide an encompassing, system-wide view of biological changes. Here, phenotypic changes on the tissue-structural and physiological level are used as statistical covariants to enrich the gene expression analysis, suggesting correlative processes between gene expression and phenotype unlocked by multi-sample comparisons. We apply correlative and gene set enrichment procedures and compare the results to differential analysis to identify molecular markers. Evaluation based on ontological classifications proves changes in prioritization of disease-related genes that would have been overlooked by conventional gene expression analyses strategies. 相似文献
12.
Background
With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods.Results
Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled.Conclusion
The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets. 相似文献13.
Moloshok TD Klevecz RR Grant JD Manion FJ Speier WF Ochs MF 《Bioinformatics (Oxford, England)》2002,18(4):566-575
MOTIVATION: Microarray and gene chip technology provide high throughput tools for measuring gene expression levels in a variety of circumstances, including cellular response to drug treatment, cellular growth and development, tumorigenesis, among many other processes. In order to interpret the large data sets generated in experiments, data analysis techniques that consider biological knowledge during analysis will be extremely useful. We present here results showing the application of such a tool to expression data from yeast cell cycle experiments. RESULTS: Originally developed for spectroscopic analysis, Bayesian Decomposition (BD) includes two features which make it useful for microarray data analysis: the ability to assign genes to multiple coexpression groups and the ability to encode biological knowledge into the system. Here we demonstrate the ability of the algorithm to provide insight into the yeast cell cycle, including identification of five temporal patterns tied to cell cycle phases as well as the identification of a pattern tied to an approximately 40 min cell cycle oscillator. The genes are simultaneously assigned to the patterns, including partial assignment to multiple patterns when this is required to explain the expression profile. AVAILABILITY: The application is available free to academic users under a material transfer agreement. Go to http://bioinformatics.fccc.edu/ for more details. 相似文献
14.
In the decade since their invention, spotted microarrays have been undergoing technical advances that have increased the utility, scope and precision of their ability to measure gene expression. At the same time, more researchers are taking advantage of the fundamentally quantitative nature of these tools with refined experimental designs and sophisticated statistical analyses. These new approaches utilise the power of microarrays to estimate differences in gene expression levels, rather than just categorising genes as up- or down-regulated, and allow the comparison of expression data across multiple samples. In this review, some of the technical aspects of spotted microarrays that can affect statistical inference are highlighted, and a discussion is provided of how several methods for estimating gene expression level across multiple samples deal with these challenges. The focus is on a Bayesian analysis method, BAGEL, which is easy to implement and produces easily interpreted results. 相似文献
15.
Pasquier C Girardot F Jevardat de Fombelle K Christen R 《Bioinformatics (Oxford, England)》2004,20(16):2636-2643
MOTIVATION: Microarray technology makes it possible to measure thousands of variables and to compare their values under hundreds of conditions. Once microarray data are quantified, normalized and classified, the analysis phase is essentially a manual and subjective task based on visual inspection of classes in the light of the vast amount of information available. Currently, data interpretation clearly constitutes the bottleneck of such analyses and there is an obvious need for tools able to fill the gap between data processed with mathematical methods and existing biological knowledge. RESULTS: THEA (Tools for High-throughput Experiments Analysis) is an integrated information processing system allowing convenient handling of data. It allows to automatically annotate data issued from classification systems with selected biological information coming from a knowledge base and to either manually search and browse through these annotations or automatically generate meaningful generalizations according to statistical criteria (data mining). AVAILABILITY: The software is available on the website http://thea.unice.fr/ 相似文献
16.
Richard S Savage Katherine Heller Yang Xu Zoubin Ghahramani William M Truman Murray Grant Katherine J Denby David L Wild 《BMC bioinformatics》2009,10(1):242
Background
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained. 相似文献17.
Genesis: cluster analysis of microarray data 总被引:26,自引:0,他引:26
18.
MOTIVATION: Identifying patterns of co-expression in microarray data by cluster analysis has been a productive approach to uncovering molecular mechanisms underlying biological processes under investigation. Using experimental replicates can generally improve the precision of the cluster analysis by reducing the experimental variability of measurements. In such situations, Bayesian mixtures allow for an efficient use of information by precisely modeling between-replicates variability. RESULTS: We developed different variants of Bayesian mixture based clustering procedures for clustering gene expression data with experimental replicates. In this approach, the statistical distribution of microarray data is described by a Bayesian mixture model. Clusters of co-expressed genes are created from the posterior distribution of clusterings, which is estimated by a Gibbs sampler. We define infinite and finite Bayesian mixture models with different between-replicates variance structures and investigate their utility by analyzing synthetic and the real-world datasets. Results of our analyses demonstrate that (1) improvements in precision achieved by performing only two experimental replicates can be dramatic when the between-replicates variability is high, (2) precise modeling of intra-gene variability is important for accurate identification of co-expressed genes and (3) the infinite mixture model with the 'elliptical' between-replicates variance structure performed overall better than any other method tested. We also introduce a heuristic modification to the Gibbs sampler based on the 'reverse annealing' principle. This modification effectively overcomes the tendency of the Gibbs sampler to converge to different modes of the posterior distribution when started from different initial positions. Finally, we demonstrate that the Bayesian infinite mixture model with 'elliptical' variance structure is capable of identifying the underlying structure of the data without knowing the 'correct' number of clusters. AVAILABILITY: The MS Windows based program named Gaussian Infinite Mixture Modeling (GIMM) implementing the Gibbs sampler and corresponding C++ code are available at http://homepages.uc.edu/~medvedm/GIMM.htm SUPPLEMENTAL INFORMATION: http://expression.microslu.washington.edu/expression/kayee/medvedovic2003/medvedovic_bioinf2003.html 相似文献
19.
Johnson RJ Williams JM Schreiber BM Elfe CD Lennon-Hopkins KL Skrzypek MS White RD 《In silico biology》2005,5(4):389-399
Microarray technology has resulted in an explosion of complex, valuable data. Integrating data analysis tools with a comprehensive underlying database would allow efficient identification of common properties among differentially regulated genes. In this study we sought to compare the utility of various databases in microarray analysis. The Proteome BioKnowledge Library (BKL), a manually curated, proteome-wide compilation of the scientific literature, was used to generate a list of Gene Ontology (GO) Biological Process (BP) terms enriched among proteins involved in cardiovascular disease. Analysis of DNA microarray data generated in a study of rat vascular smooth muscle cell responses revealed significant enrichment in a number of GO BPs that were also enriched among cardiovascular disease-related proteins. Using annotation from LocusLink and chip annotation from the Gene Expression Omnibus yielded fewer enriched cardiovascular disease-associated GO BP terms. Data sets of orthologous genes from mouse and human were generated using the BKL Retriever. Analysis of these sets focusing on BKL Disease annotation, revealed a significant association of these genes with cardiovascular disease. These results and the extensive presence of experimental evidence for BKL GO and Disease features, underscore the benefits of using this database for microarray analysis. 相似文献
20.